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Abstract. In this article, we discuss the first elementary proof, due to Selberg
and Erdős, of the Prime Number Theorem. In particular, we begin with a
presentation of the Selberg symmetry formula and proceed to give a detailed
account of the proof as published by Erdős in 1949.

1. Introduction

The prime numbers, and specifically their enumerating function π defined by

π(x) = #{primes p : p ≤ x},

have been a source of fascination to mathematicians for thousands of years. As
early as 300 BC, Euclid discussed a simple proof of the infinitude of primes
(i.e. the unboundedness of π) in his famed Elements. As late as the 1700s, Euler
discovered another, more informative proof that there are infinitely many primes:
in fact, he showed that the primes are so frequent among the integers that the
series ∑

prime p

1

p

diverges. Drawing on Euler’s methods and employing inputs from complex analy-
sis, like the study of Dirichlet series and Landau’s Theorem, Dirichlet proved that
there are infinitely many primes in arithmetic progressions. Such tools, and in
particular the complex analytic properties of the Riemann ζ-function, were funda-
mental in establishing the first asymptotic for π(x). As an adolescent in the late
1700s, Gauss had correctly posited that π(x) ∼ x/ log x ∼ Li(x) :=

∫ x

2
dt/ log t,

but it took a century for his conjecture to be proven. In the 1840s via elementary
methods, Chebyshev explicitly computed constants c1 < 1 < c2, both close to 1
in value, such that

(1) c1 <
π(x)

x/ log x
< c2,

a result that provided a partial validation of Gauss’ conjecture. And by 1896,
with such implements as Stirling’s formula, Jensen’s formula, and von Mangoldt’s
Theorem in hand, Hadamard and Poussin completed the proof of Gauss’ conjec-
ture by showing that ζ(1 + iT ) 6= 0 for all T ∈ R.

1
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The aforementioned asymptotic, π(x) ∼ x/ log x, came to be known in the
twentieth century as the “Prime Number Theorem” (PNT), and it was believed
by many a great mathematician, including Hardy, that the PNT and its proof
were intimately connected to complex analysis; i.e. it was thought that the PNT
is a “deep” theorem that cannot be deduced by elementary means. This belief was
strikingly disproved by Selberg and Erdős in the 1940s, when Selberg employed
elementary methods to obtain the so-called Selberg symmetry formula

(2)
∑

prime p
p≤x

log2 p+
∑

prime p,q
pq≤x

log p log q = 2x log x+O(x),

with which Erdős and Selberg individually managed to find a completely ele-
mentary proof of the PNT. In this article, we begin with a presentation of the
Selberg symmetry formula along with is proof, and we then proceed to give a
detailed account of the elementary proof of the PNT as published by Erdős in
1949 ([Erd49]).

2. The Selberg Symmetry Formula

The Selberg symmetry formula (2) is a key input in the elementary proof of
the PNT that is given in Section 3 (as it happens, (2) can be very easily deduced
from the PNT!). The following account of the formula and its proof is inspired
by a weblog post of Tao ([Tao07]) and by an annotation of Balady ([Bal06]).

To prove (2), it seems natural to consider defining a function that is supported
not only on primes (as is suggested by the first sum in the equation), but also on
those numbers that can be expressed as a product of two primes (as is suggested
by the second sum). Given such a function, call it f , we might be able to replace
the left-hand-side of (2) with a single, more tractable sum over all n ≤ x of f(n).
In this regard, we make the following definition: for positive integers n, let the
2nd von Mangoldt function Λ2(n) be defined by

Λ2(n) :=
∑
d|n

µ(d) log2
(n
d

)
.

We claim that Λ2(n) is an approximate indicator function for the primes and
products of two primes; i.e. we claim that Λ2(n) is, in large part, supported on the
primes and products of two primes. To begin with, notice that Λ2(p) = log2 p 6=
0,Λ2(p

2) = 3 log2 p 6= 0 for any prime p, and that Λ2(pq) = 2 log p log q 6= 0 when
p, q are distinct primes. Moreover, as we will now show, Λ2(n) = 0 whenever n
has at least 3 distinct prime factors:

Proposition 1. For all positive integers n such that either n = 1 or n has at
least 3 distinct prime factors, we have that Λ2(n) = 0.
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Proof. It is obvious that Λ2(1) = 0. Now suppose that n has at least 3 distinct
prime factors. Write n in terms of its prime factorization as n = pe11 . . . pekk . Then,
we have the following equalities:

Λ2(n) =
∑
d|n

µ(d) log2
(n
d

)
=

∑
d|n

d sq-free

µ(d) log2

(
pe11 . . . pekk

d

)

=
∑
d|n

d sq-free

µ(d)

(
k∑

i=1

ei log pi − log d

)2

=

(
k∑

i=1

ei log pi

)2 ∑
d|n

d sq-free

µ(d)− 2
k∑

i=1

ei log pi
∑
d|n

d sq-free

µ(d) log d+

∑
d|n

d sq-free

µ(d) log2 d.

Now, to complete the proof, it suffices to show that the following three sums are 0:∑
d|n

d sq-free

µ(d) =
∑
d|n

d sq-free

µ(d) log d =
∑
d|n

d sq-free

µ(d) log2 d = 0.

But the above equalities follow easily from applying the binomial theorem to the
fact that (1− 1)m = 0 for all m ∈ Z>0 (it is also necessary to assume that n has
sufficiently many prime factors; e.g. if n > 1, then n must have at least three
distinct prime factors for the third sum to be 0). �

It follows from our above computation of Λ2(p), Λ2(p
2), and Λ2(pq) and from

Proposition 1 that Λ2(n) that the function Λ2(n) serves as an approximate in-
dicator function for the primes and products of two primes. To understand the
left-hand-side of (2), it now seems useful to study the following sum:

(3)
∑
n≤x

Λ2(n) =
∑
n≤x

∑
d|n

µ(d) log2
(n
d

)
.

We will now show that the double sum on the right-hand-side of (3) gives rise
to the left-hand-side of (2). To evaluate this double sum, we introduce a new
function called the 1st von Mangoldt function and prove the following lemma.
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Lemma 2. For positive integers n, let the 1st von Mangoldt function Λ(n) be
defined by

Λ(n) =
∑
d|n

µ(d) log
(n
d

)
.

Then, we have that∑
d|n

µ(d) log2
(n
d

)
= Λ(n) log n+

∑
d|n

Λ(d)Λ
(n
d

)
.

Proof. It follows from the above definition of Λ(n) that Λ(n) = log p when n = pk

for p prime and positive integers k, and that Λ(n) = 0 otherwise. By expressing
n in its prime factorization, we can then deduce that

log n =
∑
d|n

Λ(d).

By applying the above equality repeatedly, we obtain the following equalities:

log2 n =
∑
d|n

Λ(d) log n

=
∑
d|n

Λ(d) log
(n
d

)
+
∑
d|n

Λ(d) log d

=
∑
d|n

Λ(d)
∑
a|n

d

Λ(a) +
∑
d|n

Λ(d) log d

=
∑
ad|n

Λ(a)Λ(d) +
∑
d|n

Λ(d) log d

=
∑
b|n

Λ(b) log b+
∑
d|b

Λ(d)Λ

(
b

d

) .

The desired equality then follows by applying the Möbius inversion formula. �

By Lemma 2, the double sum on the right-hand-side of (3) may be written as
follows: ∑

n≤x

∑
d|n

µ(d) log2
(n
d

)
=

∑
n≤x

Λ(n) log n+
∑
d|n

Λ(d)Λ
(n
d

)
=

∑
n≤x

Λ(n) log n+
∑
mn≤x

Λ(m)Λ(n).

Now, observe that we have∑
n≤x

Λ(n) log n =
∑

prime p
p≤x

log2 p+O(
√
x log2 x),
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because the prime powers in the support of Λ(n) make a negligible contribution
to the sum.

We also claim that∑
mn≤x

Λ(m)Λ(n) =
∑

prime p,q
pq≤x

log p log q +O(x).

By rearranging the claimed equality, it suffices to show that∑
mn≤x

m,n not both prime

Λ(m)Λ(n) = O(x),

and by symmetry, it further suffices to show that∑
mn≤x

m not prime

Λ(m)Λ(n) = O(x).

For any fixed m ≤ x, we have by Chebyshev’s bound (1) that∑
n≤x/m

Λ(m)Λ(n)� Λ(m) · x
m
.

Thus, we have that∑
mn≤x

m not prime

Λ(m)Λ(n)�
∑
m≤x

m not prime

Λ(m) · x
m
�

∑
m≤x

m not prime

x · logm

m
� x,

which yields the above claim. From the previous two estimates, it follows that
we have∑

n≤x

∑
d|n

µ(d) log2
(n
d

)
=

∑
n≤x

Λ(n) log n+
∑
mn≤x

Λ(m)Λ(n)

=
∑

prime p
p≤x

log2 p+
∑

prime p,q
pq≤x

log p log q +O(x).

In this sense, the right-hand-side of (3) does give rise to the left-hand-side of
(2). Now, to prove (2), it suffices to show that the right-hand-side of (3) can be
estimated as follows:

(4)
∑
n≤x

∑
d|n

µ(d) log2
(n
d

)
= 2x log x+O(x).

To obtain the above estimate, we require the following lemma, which contains a
number of other useful estimates:
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Lemma 3. We have the following estimates:∑
n≤x

µ(n)

n
= O(1),(5)

∑
n≤x

µ(n)

n
log
(x
n

)
= O(1),(6)

∑
n≤x

µ(n)

n
log2

(x
n

)
= 2 log x+O(1).(7)

Proof. For (5), the Möbius Inversion Formula tells us that

1 =
∑
n≤x

µ(n)
(x
n

+O(1)
)

= x
∑
n≤x

µ(n)

n
+O(x),

from which we deduce that ∑
n≤x

µ(n)

n
= O(1),

as desired. For (6), approximating with an integral yields that∑
n≤x

x

n
= x log x+ Cx+O(1),

where C is a fixed constant. Then, the Möbius Inversion Formula tells us that

x =
∑
n≤x

µ(n)

(
x

n
log
(x
n

)
+
Cx

n
+O(1)

)
= x

∑
n≤x

µ(n)

n
log
(x
n

)
+ Cx

∑
n≤x

µ(n)

n
+O(x).

By applying (5) and rearranging, we obtain that∑
n≤x

µ(n)

n
log
(x
n

)
= O(1),

as desired. For (7), approximating with an integral yields that∑
n≤x

x

n
log
(x
n

)
=
x

2
log2 x+ Cx log x−Dx+O(log x),
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where C and D are fixed constants. Then, the Möbius Inversion Formula tells us
that

x log x =
x

2

∑
n≤x

µ(n)

n
log2

(x
n

)
+ Cx

∑
n≤x

µ(n)

n
log
(x
n

)
−

Dx
∑
n≤x

µ(n)

n
+
∑
n≤x

O
(

log
(x
n

))
.

Approximating with an integral also yields that

∑
n≤x

log
(x
n

)
= x+O(log x),

and this estimate along with (5) and (6) tell us that

x log x =
x

2

∑
n≤x

µ(n)

n
log2

(x
n

)
+ Cx

∑
n≤x

µ(n)

n
log
(x
n

)
−

Dx
∑
n≤x

µ(n)

n
+
∑
n≤x

O
(

log
(x
n

))
=

x

2

∑
n≤x

µ(n)

n
log2

(x
n

)
+O(x) +O(x) +O(x),

from which we deduce that

∑
n≤x

µ(n)

n
log2

(x
n

)
= 2 log x+O(1),

which is the desired result. �

The last estimate we will require follows easily from approximation by an in-
tegral:

(8)
∑
n≤x

log n

n
=

1

2
log2 x+ C +O

(
log x

x

)
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for some fixed constant C. Now, observe that we may expand the double sum on
the left-hand-side of (4) in the following way:∑

n≤x

∑
d|n

µ(d) log2
(n
d

)
=

∑
ad≤x

µ(d) log2 a

=
∑
d≤x

µ(d)
∑
a≤x/d

log2 a

=
∑
d≤x

µ(d)

d
log2

(x
d

)
− 2x

∑
d≤x

µ(d)

d
log
(x
d

)
+

2x
∑
d≤x

µ(d)

d
+O

(∑
d≤x

log2
(x
d

))
,

where the last equality follows from applying the estimate (8). We now apply the
estimates given in Lemma 3. By (7), the first term in the above sum gives rise
to the main term of 2x log x+O(x), by (6), the second term in the above sum is
just O(x), and by (5), the third term in the above sum is also just O(x). Finally,
by approximating with an integral, it is easy to see that∑

d≤x

log2
(x
d

)
= O(x),

and applying this estimate to the fourth term in the above sum yields that the
fourth term is also just O(x). We thus conclude that∑

n≤x

∑
d|n

µ(d) log2
(n
d

)
= 2x log x+O(x),

which yields the desired equality (4). But we already showed that (4) implies (2),
so we have indeed proven the Selberg symmetry formula (2). It is worth noting
that this formula is a useful tool for devising elementary proofs of many theorems
in analytic number theory, not just the PNT ([Erd49]).

3. The Proof of the PNT

We now present the elementary proof of the PNT, due to Selberg and Erdős.
We will begin with a proposition of Erdős (i.e. equation (2) from [Erd49]), which
makes use of the Selberg symmetry formula (2), and we will conclude by deducing
the PNT from this proposition and from the Selberg symmetry formula. As is
observed by Erdős in [Erd49], it is not necessary to use the full strength of the
Selberg symmetry formula: in the following, we only require that

(9)
∑

prime p
p≤x

log2 p+
∑

prime p,q
pq≤x

log p log q = 2x log x+ o(x log x).
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Define ϑ(x) by

ϑ(x) =
∑

prime p
p≤x

log p,

and let a and A be defined by

a = lim inf
x→∞

ϑ(x)

x
and A = lim sup

x→∞

ϑ(x)

x
.

We now prove the following proposition of Erdős:

Proposition 4 (Erdős). For every c > 0, there exists δ(c) > 0 such that

π(x(1 + c))− π(x) > δ(c)
x

log x

for sufficiently large x.

Proof of Proposition 4 (from [Erd49]). Recall that π(x) ∼ x/ log x ⇔ ϑ(x) ∼ x.
It therefore suffices (and is in fact equivalent) to show that for every x > 0 there
exists δ(c) > 0 such that

ϑ(x(1 + c))− ϑ(x) > δ(c)x

for sufficiently large x. We proceed by contradiction. If the proposition is false,
then there exist constants c > 0 such that

ϑ(x(1 + c))− ϑ(x) = o(x)

for arbitrarily large values of x. Consider the set S of all such constants c, and
let C = supS. Since 0 < a ≤ A <∞, we have that C <∞. We will show that

ϑ(x(1 + C))− ϑ(x) = o(x)

for arbitrarily large values of x. For this, we require the following lemma:

Lemma 5. Whenever x < y, we have that ϑ(y)− ϑ(x) = 2(y − x) + o(y).

Proof. By the Selberg symmetry formula (9), we have that∑
prime p
x<p≤y

(log p)2 ≤ 2(y − x) log y + o(y log y).

First suppose that x ≥ y/ log2 y. In this case, we have that log x = (1+o(1)) log y,
so for all primes p such that x < p ≤ y, we have that log p = (1 + o(1)) log y.
Dividing the above equality by log y on both sides hen yields the lemma. Now,
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suppose that x < y/ log2 y. In this case, we have the following results:

ϑ(y)− ϑ(x) = ϑ(y)− ϑ
(

y

log2 y

)
+ ϑ

(
y

log2 y

)
− ϑ(x)

< ϑ(y)− ϑ
(

y

log2 y

)
+ o(y)

< 2

(
y − y

log2 y

)
+ o(y)

= 2(y − x) + o(y),

where we used the fact that x = o(y) and where we applied the result of the first
case to deduce the second-to-last equality. �

Let ε > 0, and take c > C − ε
2
. As x→∞, running through the values where

ϑ(x(1 + c))− ϑ(x) = o(x),

we have by Lemma 5 that

ϑ(x(1 + C))− ϑ(x) = ϑ(x(1 + C))− ϑ(x(1 + c)) + ϑ(x(1 + c))− ϑ(x)

≤ 2(C − c)x+ o(x)

= εx+ o(x),

and since our choice of ε > 0 was arbitrary, we have that

ϑ(x(1 + C))− ϑ(x) = o(x),

as desired. Now, from the Selberg symmetry formula (9), we have that∑
prime p

x<p≤x(1+C)

log2 p+
∑

prime p,q
x<pq≤x(1+C)

log p log q = 2Cx log x+ o(x log x).

Now, since for all primes p ∈ (x, x(1 + C)] we have that log p < log(x(1 + C)),
we have that∑

prime p
x<p≤x(1+C)

log2 p ≤ (ϑ(x(1 + C))− ϑ(x)) log(x(1 + C)) = o(x log x).

Combining the previous two results, we deduce that

(10)
∑

prime p
p≤x(1+C)

(
ϑ

(
x

p
(1 + C)

)
− ϑ

(
x

p

))
log p = 2Cx log x+ o(x log x).

We now require the following lemma:

Lemma 6. Consider the limit as x→∞, running through the values where

ϑ(x(1 + C))− ϑ(x) = o(x).
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Then, we have that

ϑ

(
x

p
(1 + C)

)
− ϑ

(
x

p

)
= 2C

x

p
+ o

(
x

p

)
for all primes p ≤ x(1 + C) outside a set P of primes p ≤ x(1 + C) satisfying∑

p∈P

log p

p
= o(log x).

Proof. We proceed by contradiction. If the lemma is false, then there exist con-
stants b1, b2 > 0 such that

ϑ

(
x

p
(1 + C)

)
− ϑ

(
x

p

)
< (2C − b1)

x

p
for all p ∈ P and

∑
p∈P

log p

p
∼ b2 log x.

Using the well-known elementary estimate∑
prime p
p≤x

log p

p
= (1 + o(1)) log x

along with the result of Lemma 5, we deduce that∑
prime p

p≤x(1+C)

(
ϑ

(
x

p
(1 + C)

)
− ϑ

(
x

p

))
log p =

∑
p∈P

(
ϑ

(
x

p
(1 + C)

)
− ϑ

(
x

p

))
log p+

∑
prime p

p≤x(1+C),p 6∈P

(
ϑ

(
x

p
(1 + C)

)
− ϑ

(
x

p

))
log p

≤ b2(2C − b1)x log x+ 2C(1− b2)x log x+ o(x log x)

= (2C − b1b2)x log +o(x log x).

But the above result is a contradiction to (10), so we conclude that the lemma is
true. �

Given x, if a prime p satisfies

ϑ

(
x

p
(1 + C)

)
− ϑ

(
x

p

)
= 2C

x

p
+ o

(
x

p

)
,

we will say that p is “good,” and otherwise we will say that p is “bad.” Now,
assume that there exists a list of good primes p1 < · · · < pk such that

10p1 < pk < 100p1 and (1+C)(1+t)2pi > pi+1 > (1+t)pi for all i ∈ {1, . . . , k−1},
where t > 0 is small compared to C. Consider the intervals Ii defined for each i
by

Ii =

[
x

pi
,
x

pi
(1 + C)

]
.
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If Ii ∩ Ii+1 6= ∅ for some I, then by assumption we have that
x

pi+1

(1 + t) <
x

pi
<

x

pi+1

(1 + C).

We now claim that

ϑ

(
x

pi

)
− ϑ

(
x

pi+1

)
= 2

(
x

pi
− x

pi+1

)
+ o

(
x

pi

)
.

If the above equality does not hold, then

ϑ

(
x

pi

)
− ϑ

(
x

pi+1

)
< (2− c1)

(
x

pi
− x

pi+1

)
for some constant c1 > 0, and combining this result with the fact that pi+1 was
taken to be good yields that

ϑ

(
x

pi+1

(1 + C)

)
− ϑ

(
x

pi

)
> (2 + c2)

(
x

pi+1

(1 + C)− x

pi

)
for some constant c2, which contradicts the result of Lemma 5. Thus, the claimed
equality above must hold. Combining this equality with the fact that pi was taken
to be good yields that

(11) ϑ

(
x

pi
(1 + C)

)
− ϑ

(
x

pi+1

)
= 2

(
x

pi
(1 + C)

)
− x

pi+1

+ o

(
x

pi

)
.

If Ii ∩ Ii+1 = ∅ for some i, then it is easy to see from the assumptions made on
pi, pi+1 and the fact that t is small compared to C that we have

(12) ϑ

(
x

pi
(1 + C)

)
− ϑ

(
x

pi+1

)
> 1.9

(
x

pi
(1 + C)− x

pi+1

)
.

Now, we run through the list i = 1, . . . , k− 1. If Ii ∩ Ii+1 6= ∅, we pick (11), and
if Ii ∩ Ii+1 = ∅, we pick (12). Summing all of the picked (in)equalities yields

ϑ

(
x

p1
(1 + C)

)
− ϑ

(
x

pk

)
> 1.9

(
x

p1
(1 + C)− x

pk

)
.

Throwing away the term ϑ
(

x
pk

)
yields that

ϑ

(
x

p1
(1 + C)

)
> 1.9

(
x

p1
(1 + C)− x

pk

)
.

We now claim that the subtracted term on the right-hand-side of the above
equality is not very large. By assumption, we have that pk > 10p1, so

−1.9
x

pk
> −0.19

x

p1
> −0.19

x

p1
(1 + C).

Combining our results, we find that

(13) ϑ

(
x

p1
(1 + C)

)
> 1.6

x

p1
(1 + C).
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Since (13) holds for arbitrarily large values of x, we must have that A ≥ 1.6.
But, recalling the well-known elementary fact that A ≤ 1.5, we find that we have
a contradiction. Thus, the proposition is true.

It remains to show that there exists a list of good primes p1 < · · · < pk
satisfying the following conditions:

10p1 < pk < 100p1 and (1+C)(1+t)2pi > pi+1 > (1+t)pi for all i ∈ {1, . . . , k−1},

where t > 0 is small compared to C. Fix B large, and for each

r ∈
{

0, 1, 2, . . . ,

⌊
log x

2 logB

⌋
− 1

}
,

let Ir = (B2r, B2r+1). It is clear from the construction that Ir ⊂ (0, x) for all r.
We will first show that Ir contains a good prime for all but o(log x)-many values
of r. Since 0 < a < A < ∞, we have that by taking B sufficiently large, we can
make ϑ(Bx)− ϑ(x) > cx, so ∑

prime p
p∈Ir

log p

p
> c1,

where c1 does not depend on our choice of r. Now, if we had (c2 log x)-many
intervals Ir not containing any good primes, we would have that∑

bad p

log p

p
> c1c2 log x,

and this is a contradiction to the result of Lemma 6. Now if r is such that Ir
contains good primes, let p1(r) be the smallest good prime in Ir, and suppose
that we have a list p1(r) < p2(r) < · · · < pi(r) of good primes such that

10p1(r) < pi(r) < 100p1(r) and (1 + C)(1 + t)2pj(r) > pj+1(r) > (1 + t)pj(r)

for all j ∈ {1, . . . , i − 1} and such that this list cannot be extended to include
any pi+1(r) > pi(r). It follows that all primes in the interval

Jr(i) =
[
pi(r)(1 + t), pi(r)(1 + t)2(1 + C)

]
⊂ Ir

are bad, so (just as we deduced before in the proof that most intervals Ir contain
good primes) we have that ∑

p∈Jr(i)

log p

p
> η,

where η is an absolute constant. Now consider the collection of intervals Jr(i),
ranging over all values of r such that Ir contains a good prime. The number of
such intervals is at least half the total number of values of r, since Ir contains



14 ASHVIN A. SWAMINATHAN

no good primes for only o(log x)-many values of r. Thus, the number of such
intervals is at least log x

4 logB
. If all of the intervals Jr(i) are disjoint, we would have∑

bad p

log p

p
≥

∑
p∈Jr(i)

for some r

log p

p
> η · log x

4 logB
,

which contradicts the result of Lemma 6. It therefore suffices to show that the
intervals Jr(i) are all distinct. By taking B > 100, we find that the upper
endpoint of Jr(i), namely pi(r)(1 + t)2(1 +C), is bounded above by B2r+2, which
implies that the upper endpoint of Jr(i) is less than the lower endpoint of Ir+1.
Since the lower endpoint of Jr+1(i

′) (we have to pick a different i′ corresponding
to r+ 1) is larger than the lower endpoint of Ir+1, we find that the intervals Jr(i)
are in fact disjoint, as desired. �

Within two days of learning about Erdős’ result in Proposition 4, Selberg
managed to prove the PNT ([Erd49]). We detail his proof as follows:

Proof of the PNT (from [Erd49]). We will require three lemmas:

Lemma 7. We have that a+ A = 2.

Proof. By the definition of A, we may choose large x such that ϑ(x) = Ax+o(x).
It follows easily that ∑

prime p
p≤x

log2 p ≤ Ax log x+ o(x log x).

Now, by subtracting the above inequality from the symmetry formula (9), we
obtain the following result:∑

prime p,q
pq≤x

log p log q =
∑

prime p
p≤x

ϑ

(
x

p

)
log p = (2− A)x log x+ o(x log x).

We now recall the following well-known elementary fact:∑
prime p
p≤x

log p

p
= (1 + o(1)) log x.

Combining the above fact with the definition of a yields that∑
prime p
p≤x

ϑ

(
x

p

)
log p ≥

∑
prime p
p≤x

(
ax

p

)
log p = ax log x+ o(x log x).
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We then have that

0 =
∑

prime p
p≤x

ϑ

(
x

p

)
log p−

∑
prime p
p≤x

ϑ

(
x

p

)
log p

≤ (2− A)x log x+ o(x log x)− ax log x+ o(x log x)

= (2− a− A)x log x+ o(x log x),

from which we deduce that 2− a−A ≥ 0, so a+A ≤ 2. By repeating the above
argument with large x chosen so that ϑ(x) = ax+ o(x), we find that a+ A ≥ 2.
It follows that a+ A = 2, as desired. �

Lemma 8. Choose large x such that ϑ(x) = Ax+ o(x). Then,

ϑ

(
x

p′

)
= a

x

p′
+ o

(
x

p′

)
for all primes p′ outside a set P of primes p ≤ x satisfying∑

p∈P

log p

p
= o(log x).

Proof. We proceed by contradiction. If the lemma is false, then there exist b1, b2 >
0 and a set P of primes p ≤ x such that for all p ∈ P we have

ϑ

(
x

p

)
> (a+ b1)

x

p
and

∑
p∈P

log p

p
> b2 log x.

Now, as in the proof of Lemma 7, recall that for our choice of x we have∑
prime p
p≤x

ϑ

(
x

p

)
log p = (2− A)x log x+ o(x log x) = ax log x+ o(x log x),

where the last step is an application of Lemma 7. Combining our results, we have
the following inequalities:

ax log x+ o(x log x) =
∑

prime p
p≤x

ϑ

(
x

p

)
log p

=
∑
p∈P

ϑ

(
x

p

)
log p+

∑
prime p
p/∈P,p≤x

ϑ

(
x

p

)
log p

> b2(a+ b1)x log x+ (1− b2)ax log x+ o(x log x)

= ax log x+ b1b2x log x+ o(x log x),
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where, in the second-to-last step, we used the aforementioned fact that∑
prime p
p≤x

log p

p
= (1 + o(1)) log x.

We now have that

ax log x+ o(x log x) > ax log x+ b1b2x log x+ o(x log x),

which is clearly a contradiction. It follows that the lemma is true. �

Lemma 9. Consider the set of primes p′ such that

ϑ

(
x

p′

)
= a

x

p′
+ o

(
x

p′

)
,

and let p1 be the smallest member of this set. Then p1 < xε for every ε > 0, and

ϑ

(
x

p1p′

)
= A

x

p1p′
+ o

(
x

p1p′

)
for all primes p′ outside a set P of primes p ≤ x satisfying∑

p∈P

log p

p
= o(log x).

Proof. Subtracting the estimates∑
prime p
p≤x

log p

p
= (1 + o(1)) log x and

∑
p∈P

log p

p
= o(log x)

yields that p1 < xε for every ε > 0. If we now take the proof of Lemma 8, replace
x with x/p1, and switch a with A, we obtain the second part of the lemma by
the same argument. �

Having proven Lemmas 7, 8, and 9, we will now prove the PNT using Propo-
sition 4. Take p1 as in Lemma 9, let p′ be any prime such that

ϑ

(
x

p′

)
= a

x

p′
+ o

(
x

p′

)
,

and let p′′ < x/p1. Assume, for the sake of contradiction, that x
p1p′′

< x
p′

. Fur-

thermore, let δ ∈ (0, A/a− 1), and let the closed interval I be defined by

I =

[
p′

p1
,
p′

p1

(
A

a
− δ
)]

.

Notice that if p′′ ∈ I, then we have

a
x

p′
+ o

(
x

p′

)
≤ A

x

p1p′
+ o

(
x

p1p′

)
.
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But for any prime p′′ satisfying the equality

ϑ

(
x

p1p′

)
= A

x

p1p′
+ o

(
x

p1p′

)
,

we have by the monotonicity of ϑ that

a
x

p′
+ o

(
x

p′

)
= ϑ

(
x

p′

)
≥ ϑ

(
x

p1p′′

)
= A

x

p1p′
+ o

(
x

p1p′

)
.

It follows that none of the primes p′′ ∈ I satisfy the equality

ϑ

(
x

p1p′

)
= A

x

p1p′
+ o

(
x

p1p′

)
.

Now, observe that we have the following inequalities:

∑
prime p
p∈I

log p

p
≥

[
π

(
p′

p1

(
A

a
− δ
))
− π

(
p′

p1

)] log
(

p′

p1

)
(

p′

p1

)

> η ·

(
p′

p1

)
log
(

p′

p1

) · log
(

p′

p1

)
(

p′

p1

)
= η (η is an absolute constant)

where the first inequality is a trivial bound and the second inequality follows
from Proposition 4. As was done in the proof of Proposition 4, it is possible to
construct (c log x)-many such disjoint intervals I, and if P denotes the set of all
primes in the union of these intervals, we find that∑

p∈P

log p

p
> c′ log x

for some constant c′. This result contradicts the second part of Lemma 9, so we
must have that x

p1p′′
≥ x

p′
. It is entirely possible to choose p′ = p1, from which we

deduce that p′′ ≤ 1. It follows from the second part of Lemma 9 that

ϑ

(
x

p1

)
= A

x

p1
+ o

(
x

p1

)
,

and by assumption we have that

ϑ

(
x

p′

)
= ϑ

(
x

p1

)
= a

x

p1
+ o

(
x

p1

)
.

Adding the above two equalities, we find that

2ϑ

(
x

p1

)
= (a+ A)

x

p1
+ o

(
x

p1

)
= 2

x

p1
+ o

(
x

p1

)
,
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and dividing by 2 on both sides yields that

ϑ

(
x

p1

)
=

x

p1
+ o

(
x

p1

)
.

By the first part of Lemma 9, we have that p1 < xε for every ε > 0, so from the
above equality, we deduce that

lim
x→∞

ϑ(x)

x
= 1⇔ ϑ(x) ∼ x.

Recalling that π(x) ∼ x/ log x ⇔ ϑ(x) ∼ x, we observe that we have completed
the proof of the PNT. �

The above proof of the PNT is the first elementary proof, but it is not the
easiest elementary proof. Just days after the above proof was discovered, Selberg
and Erdős jointly managed to simplify the above arguments to a large extent
([Erd49]). Nonetheless, these simplified arguments still depend on the two key
ideas discussed in this article: the Selberg symmetry formula (2) and Erdős’
result in Proposition 4. For Selberg’s version of the first elementary proof detailed
above, please refer to [Sel49].
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