
AN INTRODUCTION TO THE THEORY OF VALUED FIELDS

ASHVIN A. SWAMINATHAN

Abstract. In this article, we discuss the theory of valued fields, a subject
that is fundamental to many subdisciplines of modern mathematics, most
notably class field theory. We begin by introducing the basic definitions and
properties of absolute values and their associated algebraic objects. Then,
after discussing completions of valued fields and normed vector spaces, we
apply the theory of absolute values to study finite extensions of number fields.
We conclude our discussion with a proof of Dirichlet’s Unit Theorem using
the language of adeles and ideles. Throughout the paper, we strive to provide
a sense of concreteness by including numerous motivating examples, many of
which relate to the field of p-adic numbers.
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1. Motivations and Definitions

1.1. A Historical Perspective. The theory of absolute values on fields was
originally developed as a means of generalizing the work of German mathemati-
cian Kurt Hensel on p-adic numbers. Hensel was interested in comparing the
ring Z of rational integers and the ring C[x] of polynomials in one variable over
C. Specifically, he observed that there is an analogy between prime ideals of Z,
which are precisely those ideals of the form (p) where p is a prime number, and
prime ideals of C[x], which are precisely those ideals of the form (x− α) where
α ∈ C. For example, one important similarity between the rings Z and C[x] is
that they are both unique factorization domains; i.e. given an element of either
ring, one can uniquely express it as a product of primes (up to multiplication
by unit). Moreover, each positive integer has a unique base-p expression for
every prime number p, just like every f ∈ C[x] can be uniquely expressed as a
polynomial in x− α for every α ∈ C. In light of these similarities, Hensel took
this analogy one step further by asking the following question: since for every
rational function f ∈ C(x) and α ∈ C we can expand f in terms of x − α by
means of its Laurent series

f(x) =
∑
n≥N

an(x− α)n,

where N ∈ Z is the order of f at α, does a similar expansion exist for a rational
number in terms of a given prime p?

In his 1904 paper entitled “Neue Grundlagen der Arithmetik,” Hensel an-
swered this question in the affirmative. Indeed, given a prime p, we can formally
write every rational number q ∈ Q as a finite-tailed “Laurent series” in p with
coefficients in {0, . . . , p − 1} as follows. If q = 0, there is nothing to do, so
suppose q > 0. Write q = pk · a

b
, where the fraction a

b
is in lowest terms and

each of a and b is coprime to p. Then, to find the Laurent series expansion of q,
we need only find the p-adic expansion of a

b
and multiply the result by pk. The

first digit r1 of the Laurent series expansion of a
b

is obtained by long division:
we find the unique number r1 ∈ {0, . . . , p−1} such that a

b
− r1, when written as

a fraction in lowest terms, has numerator divisible by p. The remaining digits
of the Laurent series expansion of a

b
are given by the Laurent series expansion

of 1
p
·
(
a
b
− r1

)
. (Notice that this algorithm simply returns the base-p expansion

of q when q ∈ Z≥0.) Now, observe that we can write the number −1 as the
formal power series

(1) − 1 = (p− 1) + (p− 1) · p+ (p− 1) · p2 + · · · =
∑
n≥0

(p− 1)pn,

so if q < 0, then we obtain an expansion of q as a Laurent series in p by
multiplying the series expansion of the positive rational number −q with the
series expansion of −1 given by (1). This formal expression of q ∈ Q as a
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Laurent series in p with coefficients in {0, . . . , p − 1} is known as the p-adic
expansion of the number q.

Given that the p-adic expansion, as formulated above, is purely formal, one
can ask whether an arbitrary formal Laurent series

(2)
∑
n≥N

anp
n

satisfying an ∈ {0, . . . , p−1} for all n represents a rational number. The answer
to the corresponding question for the field C(x) is “no,” as can be seen by noting
that the power series ∑

n≥0

(−1)2n+1

(2n+ 1)!

is a finite-tailed Laurent series in x − 0 but corresponds to the function sinx,
which is not manifestly not rational: the zero locus of sinx is an infinite discrete
subset of C. One surmises that that an analogous result holds for p-adic expan-
sions, and this is indeed the case: if p > 2, then by taking an to be such that∑n

i=0 aip
i is a root of the equation x2 ≡ 2 (mod pn) for all n ≥ 0, the power

series (2) can be thought of as a root of the polynomial x2− 2, and the rational
numbers certainly do not contain a square root of 2 (when p = 2, a similar trick
works if we replace the polynomial x2 − 2 with x2 − x + 1). Furthermore, we
observe (without proof) that one can formally add, multiply, and divide finite-
tailed Laurent series, so the set of p-adic series of the form (2) forms a field that
is a proper extension of the field Q of rational numbers. We shall denote this
field by Qp, the field of p-adic numbers.

Our construction of the field Qp, however explicit, is somewhat ad hoc and
perhaps unsatisfying. Thus far, all we know about Qp is that its elements
are formal Laurent series, most of which do not appear to converge in the
conventional sense (whereas the convergence of Laurent series expansions of
complex functions is well-understood). The reason why we omitted the proofs
of basic facts about Qp in the previous paragraph, such as the well-definedness
of the field operations, is that they are quite frankly tedious. For example, if
we are to multiply two p-adic numbers, we must not only multiply out all of
the terms, but also adjust the coefficients of the resulting series to ensure that
they lie in {0, . . . , p− 1}. It is with the view of developing a more natural and
systematic construction of the fields Qp of p-adic numbers that mathematicians
introduced the theory of valuations.

1.2. Absolute Values. In order to achieve a suitable notion of convergence for
a p-adic expansion, we must find some way to quantify the “size” of the terms in
such an expansion. On the field Q of rational numbers, we are already familiar
with one way of measuring the size of a number, namely by taking the standard
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absolute value, which (for reasons that will be revealed later) we shall denote
by | − |∞. The standard absolute value, as one readily recalls, is defined by

|x|∞ =

{
x if x ≥ 0

−x if x < 0

and satisfies three important properties: positive-definiteness (|x|∞ ≥ 0, with
equality precisely when x = 0), multiplicativity (|xy|∞ = |x|∞ · |y|∞), and the
triangle inequality (|x+ y|∞ ≤ |x|∞ + |y|∞). This notion of absolute value can
be generalized to an arbitrary field as follows:

Definition 1. An absolute value on a field k is a function | − |v : k → R≥0 that
satisfies the following three properties:

(1) Positive-definiteness: |x|v = 0 if and only if x = 0.
(2) Multiplicativity: |xy|v = |x|v · |y|v.
(3) “Modified” Triangle Inequality: There exists a constant C ∈ R≥1 such

that |1 + x|v ≤ C if |x|v ≤ 1. (In this case, observe that |x + y|v ≤
C ·max{|x|v, |y|v} for all x, y ∈ k.)

The field k, together with the absolute value | − |v, is known as a valued field.

Remark. Suppose |−|v is an absolute value on a field k, and let S be the set of all
C ∈ R≥1 such that | − |v satisfies the modified triangle inequality with the con-
stant C. Then clearly |−|v satisfies the modified triangle inequality with inf S ∈
R≥1; we call this minimal constant the Artin constant associated to | − |v.

The first two of the above properties are exactly the same as the corresponding
properties of the standard absolute value |−|∞, but the third is visibly different.
The reason for requiring a “modified” triangle inequality is to ensure that any
positive power of an absolute value is still an absolute value. For instance, the
absolute value | − |2∞ (defined by |x|2∞ = |x|∞ · |x|∞), fails to satisfy the triangle
inequality, but it does satisfy the modified triangle inequality with C = 4. More
generally, we have that for any absolute value |−|v with Artin constant C ∈ R≥1,
the function | − |mv : k → R≥0 defined in the obvious way is also an absolute
value when m > 0, with Artin constant Cm ∈ R≥1.

A number of properties of absolute values can be deduced rather quickly from
Definition 1. Indeed, if k is a field equipped with an absolute value | − |v, then
one readily checks that the following facts hold:

Lemma 2. We have |1|v = 1 and
∣∣ 1
x

∣∣
v

= 1
|x|v for x ∈ k×. Since 1 is the only

root of unity in R≥0, we have |x|v = 1 for all x ∈ k such that xn = 1 for some
n ∈ Z. It follows that | − x|v = |x|v for all x ∈ k.

Since Definition 1 gives a notion of absolute value that works over any field,
one might ask whether every field has an absolute value in the first place. But
this is clear: any field k is equipped with the trivial absolute value, whose value
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at 0 is 0 and whose value at x ∈ k× is 1. In the case where k is a finite field,
every x ∈ k× is a root of unity, so Lemma 2 implies that

Corollary 3. The only absolute value on a finite field is the trivial one.

Many properties of absolute values that will be of interest to us will hold for
the absolute value |− |mv , where m > 0, if they hold for the absolute value |− |v.
Thus, it makes sense to declare two absolute values | − |v and | − |v′ equivalent
if there exists m ∈ R>0 such that | − |v′ = | − |mv . One readily checks that this
gives an equivalence relation on the set of absolute values; an equivalence class
of absolute values is known as a place. It is natural to wonder whether every
place contains an absolute value that satisfies the ordinary triangle inequality.
Fortunately, this is indeed the case:

Lemma 4. If | − |v is an absolute value on a field k, then there exists an
equivalent absolute value |−|v′ on k that satisfies the ordinary triangle inequality.

Proof. Suppose | − |v has Artin constant C ∈ R≥1. Let | − |v′ = | − |mv , where
m = log2C. Then | − |v′ is equivalent to | − |v, and we claim that | − |v′
satisfies the triangle inequality. By construction, |− |v′ has Artin constant 2, so
|x+ y|v′ ≤ 2 ·max{|x|v′ , |y|v′} for all x, y ∈ k. It follows by induction that

(3)

∣∣∣∣∣
2r∑
i=1

xi

∣∣∣∣∣
v′

≤ 2r ·max{|xi|v′ : 1 ≤ i ≤ 2r}.

Now, notice that for any n ∈ Z≥0 we have

|x+y|nv′ = |(x+y)n|v′ =

∣∣∣∣∣
n∑
i=0

(
n

i

)
xiyn−i

∣∣∣∣∣
v′

≤ 2(n+1)
n∑
i=0

∣∣∣∣(ni
)∣∣∣∣

v′
· |xi|v′ · |yn−i|v′ ,

where the final inequality above is obtained by performing the following trick:
let 2r be the smallest power of 2 greater than n+ 1, add 2r− (n+ 1) zero terms
to the sum, applying the bound (3), and use the fact that 2r ≤ 2(n + 1). This
same trick tells us that

∣∣(n
i

)∣∣
v′
≤ 2
(
n
i

)
, so we deduce that

|x+ y|nv′ ≤ 4(n+ 1)
n∑
i=0

(
n

i

)
· |xi|v′ · |yn−i|v′ = 4(n+ 1) · (|x|v′ + |y|v′)n.

Taking nth roots on both sides, sending n→∞, and using the well-known fact
that limn→∞

n
√
n = 1, we find that |x + y|v′ ≤ |x|v′ + |y|v′ . Thus, the absolute

value | − |v′ satisfies the triangle inequality, as desired. ♠

Remark. The main tactic employed in the proof of Lemma 4 (namely, estimating
nth powers, taking nth roots, and sending n → ∞) is a fairly common one in
the theory of valuations, and we will certainly encounter it in the future. We
have now shown that every place contains an absolute value that satisfies the
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triangle inequality, so for the most part, it will suffice to restrict our attention
to such absolute values.

Thus far, we have only discussed two examples of absolute values, namely the
standard and trivial ones, so to conclude this subsection, let us consider a more
interesting example, that of the p-adic norm:

Example 5. One of our objectives in generalizing absolute values was to develop
a notion of “size” for rational numbers, with respect to which p-adic expansions
would converge. We would like the p-adic “size” of a rational number q to
somehow reflect the number of factors of p that are present in the numerator
or denominator when q is expressed in lowest terms. In this light, we make the
following definition:

Definition 6. The p-adic norm is the function | − |p : Q → R≥0 that sends
0 7→ 0 and assigns to q ∈ Q× the value p−a, where a is the unique integer such
that q = pa · r

s
, with r, s ∈ Z both coprime to p.

One readily checks that the p-adic norm is indeed an absolute value with
Artin constant C = 1. It may seem strange that we defined the p-adic norm in
such a way that it grows inversely to the number of factors of p in the numerator.
However, recall that we want p-adic expansions to converge with respect to the
p-adic norm. For this to happen, the size of a number containing a large positive
power of p in its factorization needs must be small. Thus, Definition 6 is in fact
quite natural. ♣

1.3. Topology. Recall that the standard absolute value on Q induces a metric
d : Q × Q → R≥0, defined by d(a, b) = |a − b|∞. Then, using this metric, we
can define a topology (known as the metric topology) on Q by designating the
balls B(a, r) = {b ∈ Q : d(a, b) < r} for a ∈ Q and r > 0 to be open. One
might ask whether it is possible to use our general theory of absolute values to
define metrics and topologies on arbitrary fields. To this end, let | − |v be an
absolute value on a field k. It follows from Definition 1 and Lemma 2 that if
|−|v satisfies the ordinary triangle inequality, then the function d : k×k → R≥0

defined by d(a, b) = |a − b|v is a well-defined metric on k (indeed, it satisfies
positive-definiteness, symmetry, and the triangle inequality).

The only issue with the above construction is that it requires | − |v to satisfy
the triangle inequality, which not all absolute values do. Observe, however, that
even if | − |v does not satisfy the triangle inequality, we can still use | − |v to
directly define a topology on k. Indeed, we make the following definition:

Definition 7. The topology induced by an absolute value | − |v on a field k is
generated by the basis of open balls Bv(a, d) = {b ∈ k : |b− a|v < d} for a ∈ k
and d ∈ R>0.



AN INTRODUCTION TO THE THEORY OF VALUED FIELDS 7

We asserted in the previous subsection that equivalent absolute values have
similar properties, so one might hope that the topological structure given by
Definition 7 is invariant under equivalence. In the next lemma, we prove an
even stronger version of this statement:

Lemma 8. Two absolute values | − |v and | − |v′ on a field k are equivalent if
and only if they induce the same topology on k.

Proof. First suppose | − |v and | − |v′ are equivalent; then, there exists m ∈ R>0

such that | − |v′ = | − |mv . Take a ∈ k and d ∈ R>0, and notice that

x ∈ Bv(a, d)⇔ |x− a|v
d

< 1⇔ |x− a|v
′

dm
< 1⇔ x ∈ Bv′(a, d

m).

It follows that every open ball in the topology induced by | − |v is an open ball
in the topology induced by | − |v′ , and vice versa. Thus, | − |v and | − |v′ induce
the same topologies on k.

Now suppose | − |v and | − |v′ induce the same topology on k. Observe that
for x ∈ k, we have |x|v < 1 if and only if the sequence {xn}n∈Z>0 converges to 0,
which happens if and only if |x|v′ < 1. Taking reciprocals yields that |x|v > 1 if
and only if |x|v′ > 1, from which we deduce that |x|v = 1 if and only if |x|v′ = 1.

Now let y, z ∈ k× and m,n ∈ Z; we have just shown that |ymzn|v S 1 if and

only if |ymzn|v′ S 1. Taking logarithms and rearranging, we have

n · log |z|v
log |y|v

S −m⇔ n · log |z|v′
log |y|v′

S −m.

Since the above holds for all m,n ∈ Z, it follows that
log |y|v′
log |y|v =

log |z|v′
log |z|v for all

y, z ∈ k×, from which we conclude that | − |v and | − |v′ are equivalent. ♠

Observe that Lemmas 4 and 8 together tell us that we can always replace an
absolute value with one that satisfies the triangle inequality, and hence gives
rise to a metric, without altering the topological structure of our field. The
topology induced by an absolute value also plays well with the field operations,
in the following sense:

Lemma 9. Let | − |v be an absolute value on a field k. Then k is a topo-
logical field in the topology induced by | − |v; i.e. the operations of addition,
multiplication, and inversion are continuous.

Proof. We may assume that | − |v satisfies the triangle inequality. Then for
x, y, ε1, ε2 ∈ k, we have that |x + ε1 + y + ε2|v ≤ |x + y|v + |ε1|v + |ε2|v and
that |x + y|v ≤ |x + ε1 + y + ε2|v + |ε1|v + |ε2|v. Thus, by taking ε1, ε2 so that
|ε1|v + |ε2|v is sufficiently small, we can make |x+ ε1 + y + ε2|v arbitrarily close
to |x+ y|v, implying that addition is continuous. The proofs for multiplication
and inversion are similar, so we omit them. ♠
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2. Types of Absolute Values

In this section, we give definitions for and prove basic properties of two impor-
tant properties that an absolute value can have, namely non-archimedean-ness
and discreteness. Absolute values satisfying one or both of these properties are
fundamental to the theory of valued fields.

2.1. Non-archimedean Absolute Values. To begin with, recall from Exam-
ple 5, where we discussed the p-adic norm, that there are absolute values (in
addition to the trivial one) with Artin constant C = 1. Such absolute values
are given a special name:

Definition 10. An absolute value |−|v on a field k is said to be non-archimedean
if it has Artin constant C = 1 (in this case, the modified triangle inequality is
known as the ultra-metric inequality). Otherwise, it is said to be archimedean.

In general, it may not be easy to check whether an absolute value is non-
archimedean directly from Definition 10. The following result provides a some-
what simpler test for this property:

Lemma 11. An absolute value | − |v on a field k is non-archimedean if and
only if |n|v ≤ 1 for all n =

∑n
i=1 1 ∈ k.

Proof. The forward direction is an obvious consequence of the ultra-metric in-
equality. For the reverse direction, we apply the tactic used in the proof of
Lemma 4. Take x ∈ k with |x|v ≤ 1. Then for any n ∈ Zn≥0, we have

|1 + x|nv ≤
n∑
i=0

∣∣∣∣(ni
)∣∣∣∣

v

· |x|i ≤ n+ 1.

Taking nth roots and sending n→∞ yields that |1 + x|v ≤ 1, so | − |v satisfies
the ultra-metric inequality and is therefore non-archimedean. ♠
Remark. The result of Lemma 11 gives justification to the terminology “non-
archimedean.” Recall that the archimedean property on Q states that for every
x, y ∈ Q with x > 0, then there exists n ∈ Z>0 such that nx > y. We can
rewrite this inequality in terms of absolute values as |nx|∞ > |y|∞, and taking
x = y = 1, we see that |n|∞ > 1 for some positive integer n. This is, as we
might hope, exactly the opposite of the non-archimedean condition given by
Lemma 11.

Corollary 12. If k is a field of finite characteristic p, then every absolute value
on k is non-archimedean.

Proof. Let | − |v be an absolute value on k. The additive subgroup A ⊂ k
generated by 1 is a copy of the finite field Fp of order p, so by Corollary 3, |x|v = 1
for all nonzero x ∈ A. That | − |v is non-archimedean follows immediately from
Lemma 11. ♠
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Because of the ultra-metric inequality, the geometry of a field equipped with
a non-archimedean absolute value is really quite strange, as is evidenced by the
following two lemmas:

Lemma 13. Let | − |v be a non-archimedean absolute value on a field k. If
|x|v < |y|v, then |x + y|v = |y|v. In particular, every triangle in k is isosceles
with respect to the metric given by | − |v.

Proof. The ultra-metric inequality tells us that |x+ y|v ≤ |y|v and that

|y|v = |(x+ y)− x|v ≤ max{|x+ y|v, |x|v}.

Since |y|v 6≤ |x|v, we have |y|v ≤ |x+y|v ≤ |y|v, which implies the first statement
in the lemma. For the second statement, let x, y, z ∈ k. Then x− z = (x− y) +
(y−z), so by the first statement, we have that |x−z|v = max{|x−y|v, |y−z|v}.
It follows that the triangle with vertices x, y, z is isosceles. ♠

Example 14. We return to the case of the p-adic norm | − |p from Example 5.
We already know that | − |p satisfies the ultra-metric inequality, so it gives a
non-archimedean absolute value on Q. Suppose x, y ∈ Z, and express them
as x = pmr and y = pns, where r, s ∈ Z are both coprime to p. We may
assume without loss of generality that m ≤ n, in which case the largest factor
of p dividing x + y is pm, so |x + y|v = |x|v, as we know should be true from
Lemma 13. ♣

Lemma 15. Let |−|v be a non-archimedean absolute value on a field k. For any
x, y ∈ k and r ∈ R>0 such that |x − y|v ≥ r, we have Bv(x, r) ∩ Bv(y, r) = ∅.
In particular, every open ball in k is closed.

Proof. By the ultra-metric inequality, for any z ∈ Bv(x, r) ∩Bv(y, r), we have

r ≤ |x− y|v = |(x− z) + (z − y)|v ≤ max{|x− z|v, |z − y|v} < r,

which is a contradiction (the second-to-last inequality is in fact an equality
by Lemma 13, but we do not need this fact for the present proof). Thus,
Bv(x, r)∩Bv(y, r) = ∅ for all x, y ∈ k, which is the first statement in the lemma.
For the second statement, take x ∈ k, r ∈ R>0, and y ∈ k \ Bv(x, r). Observe
that |x−y|v ≥ r, so by the first statement, we have that Bv(x, r)∩Bv(y, r) = ∅.
We have thus exhibited an open neighborhood of y disjoint from Bv(x, r), which
implies that k \Bv(x, r) is open, so Bv(x, r) is closed. ♠

The next proposition, which follows from Lemma 15, states that the topology
induced on a field by a non-archimedean absolute value is about as ill-behaved
as it could possibly be:

Proposition 16. Let | − |v be a non-archimedean absolute value on a field k.
Then k is totally disconnected with respect to the topology induced by | − |v.
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Proof. Suppose U ⊂ k is a subset containing at least two distinct elements, call
them x, y. Take r ∈ (0, |x − y|v], and consider the sets A = B(x, r) ∩ U and
C = U \ B(x, r). Clearly, we have that A ∩ C = ∅ and A ∪ C = U . Moreover,
because A is closed in U by Lemma 15, we have that C is open in U . But since
A is also open in U , we have that U = AtC constitutes a separation of U into
two disjoint open subsets. Because our choice of U was arbitrary, we have that
k is totally disconnected, as desired. ♠

Now that we have dwelled for long enough about the strange geometric prop-
erties of a field equipped with a non-archimedean absolute value, we shall pro-
ceed to discuss some of the truly amazing properties that such fields have.

We begin by observing that if | − |v is a non-archimedean absolute value on
a field k, then the closed ball Ov = {x ∈ k : |x|v ≤ 1} is in fact a subring of
k, called the valuation ring associated to | − |v. Indeed, notice that 1 ∈ Ov

because |1|v = 1; moreover, if x, y ∈ Ov, then |x + y|v ≤ max{|x|v, |y|v} ≤ 1,
so x + y ∈ Ov, and |xy|v = |x|v · |y|v ≤ 1, so xy ∈ Ov. By the same argument,
one checks that the subset pv = {x ∈ k : |x| < 1} ⊂ Ov is an ideal, called
the valuation ideal associated to | − |v. The ideal pv is maximal because every
element in Ov \ pv has absolute value 1 and is therefore a unit (note that the
units in Ov are precisely those elements x ∈ Ov with |x|v = 1; the set of all units
in Ov is denoted by O×v ). Since every proper ideal of Ov is contained in pv, we
have that Ov is a local ring with unique maximal ideal pv, and the quotient ring
κv = Ov/pv is a field, called the residue field associated to | − |v. Just as with
the topology induced by an absolute value, the valuation ring, valuation ideal,
and residue field are invariant under equivalence:

Lemma 17. Let | − |v and | − |v′ be non-archimedean absolute values on a field
k. If | − |v and | − |v′ are equivalent, then Ov = Ov′, pv = pv′, and κv = κv′. On
the other hand, if Ov = Ov′, then | − |v and | − |v′ are equivalent.

Proof. For the forward direction, recall from the proof of Lemma 8 that |x|v S 1

if and only if |x|′v S 1 for all x ∈ k. It immediately follows that Ov = Ov′ and

pv = pv′ , so κv = κv′ as well. For the reverse direction, suppose Ov = Ov′ . Notice
that pv = pv′ , because Ov \ pv = Ov′ \ pv′ : the property of having absolute value

1 is equivalent to being a unit in the ring Ov = Ov′ . It follows that |x|v S 1 if

and only if |x|′v S 1 for all x ∈ k. The remainder of the proof is identical to

that of Lemma 8. ♠

The next lemma gives some insight into the relationship between the valuation
ring Ov and the field k:

Lemma 18. Let | − |v be a non-archimedean absolute value on a field k. Then
k is the fraction field of Ov, and Ov is integrally closed in k.
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Proof. The first statement is obvious: Every x ∈ k× satisfies either x ∈ Ov or
1
x
∈ Ov. For the second statement, let x ∈ k be integral over Ov. Then there

exist a0, . . . , an−1 ∈ Ov such that

xn = an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0.

If x 6∈ Ov, then 1
x
∈ Ov. Multiplying the above equality through by

(
1
x

)n−1

yields that

x = an−1 + an−2

(
1
x

)
+ · · ·+ a1

(
1
x

)n−2
+ a0

(
1
x

)n−1 ∈ Ov,

a contradiction implying that x ∈ Ov. ♠

2.2. Discrete Absolute Values. We shall now discuss another important
property of absolute values. For any absolute value | − |v on a field k, we
have that |x|v ∈ R>0 for x ∈ k×, or equivalently, log |x| ∈ R for x ∈ k×. But
recall from Example 5 that for the p-adic norm | − |p, we have something much
stronger: logp |x|p ∈ Z ⊂ R for all x ∈ Q. Absolute values whose logarithms
take values in a discrete subgroup of R are given a special name:

Definition 19. An absolute value | − |v on a field k is said to be discrete if
{log |x|v : x ∈ k×} ⊂ R is a discrete subgroup. Equivalently, | − |v is discrete if
there exists δ > 0 such that |x|v ∈ (1− δ, 1 + δ)⇒ |x|v = 1.

Absolute values that are both discrete and non-archimedean are of significant
importance to the theory of valued fields. We will now discuss the properties
of the valuation rings associated to such absolute values. We begin with the
following characterization:

Lemma 20. A non-archimedean absolute value is discrete if and only if its
valuation ideal is principal.

Proof. Let |−|v be a non-archimedean absolute value on a field k. First suppose
| − |v is discrete. Then by definition, we have that the set A = {log |a|v : a ∈ k}
is a nontrivial discrete subgroup of R. Thus, A is a free abelian group of rank
1 and is generated by its least positive element α. Let α̃ ∈ k be such that
α = log |α̃|v. Since α > 0, we have that |α̃|v > 1, so

∣∣ 1
α̃

∣∣
v
< 1. We claim that

pv is generated by 1
α̃

. We already showed that
∣∣ 1
α̃

∣∣
v
< 1, so 1

α̃
∈ pv. Now if

β ∈ pv, we have that |β|v ≤
∣∣ 1
α̃

∣∣
v
, since α is the least positive element of A.

Thus, |βα̃|v = |β|v · |α̃|v ≤ 1, so βα̃ ∈ Ov, which implies that β ∈ (α̃). It follows
that pv = (α̃).

Now suppose pv is principal and generated by π. To show that | − |v is
discrete, it suffices to show that there exists δ > 0 such that for all a ∈ k
satisfying |a|v ∈ (1 − δ, 1 + δ) we have |a|v = 1. Clearly any δ > 0 satisfies
|a|v ∈ (1 − δ, 1 + δ) if |a|v = 1. If |a|v < 1, then a ∈ pv, so a = rπ for
some r ∈ Ov. Taking absolute values, we have that |a|v = |r|v · |π|v ≤ |π|v.
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If |a|v > 1, then
∣∣ 1
a

∣∣
v
< 1, so

∣∣ 1
a

∣∣
v
≤ |π|v, which implies that |a|v ≥ 1

|π|v .

Let δ = max
{

1
|π|v − 1, 1− |π|v

}
. Then |a|v 6= 1 implies that 1 + δ ≤ |a|v or

1 − δ ≥ |a|v. Taking the contrapositive, we have that |a|v = 1 for all a ∈ k
satisfying |a|v ∈ (1− δ, 1 + δ). It follows that | − |v is discrete. ♠

Since equivalent absolute values give rise to the same valuation ring, we de-
duce from Lemma 20 that the property of being discrete is invariant under
equivalence. The valuation ring associated to a discrete, non-archimedean ab-
solute value is known as a discrete valuation ring (DVR). The following propo-
sition gives a number of conditions that are necessary and sufficient for a ring
to be a DVR:

Proposition 21. Let R be a Noetherian local domain of Krull dimension 1,
and let m ⊂ R be its unique maximal ideal. Then, the following are equivalent:

(1) R is a DVR.
(2) R is integrally closed in its field of fractions (i.e. R is Dedekind).
(3) m is principal.
(4) Every nonzero proper ideal of R is a power of m.

Proof. That (1) implies (2) is a consequence of Lemma 18, for DVRs are valua-
tion rings. To see that (3) implies (4), suppose m = (t), and let I be any proper
nonzero ideal of R. Since R is local, we have that I ⊂ m. By Krull’s Intersec-
tion Theorem (for the statement and proof of this theorem, see Appendix 6),
we have that

⋂∞
n=1 m

n = 0, so the set of all positive integers n satisfying I ⊂ mn

is finite and nonempty; let N be the largest element of this set. Then there
exists x ∈ I such that x ∈ mN \mN+1. We can therefore write x as x = ytN for
y ∈ R \m. But then y is a unit, so tN ∈ I, implying that I = (tN) = mN .

It now remains to show that (2) implies (3) and that (4) implies (1); these
two steps are a bit more involved. Suppose (2) holds, so that R is integrally
closed in its field of fractions k, and take any x ∈ R. Since R is Noetherian,
(x) ⊃ mn for some positive integer n. By taking n to be minimal, we can
find y ∈ mn−1 \ (x). We claim that m is generated by t = x

y
. To prove this

claim, notice that t−1m, which at first glance is just a R-submodule of k, is in
fact an ideal of R. If t−1m 6= R, then t−1m ⊂ m, which implies that m is a
finitely-generated R-module with a faithful action of the ring R[t−1]. It follows
that t−1 is integral over R, so since R is integrally closed in k, we have that
t−1 ∈ R, which contradicts the fact that y = t−1x 6∈ (x). Thus, we must have
that t−1m = R, so m = (t), as claimed.

Finally, suppose (4) holds, so that every nonzero proper ideal of R is a power
of m. We first observe that m is principal, because if t ∈ m \m2, then (t) = mn

for some positive integer n, but we must have n = 1, implying that m = (t). We
must now construct a field k and a discrete, non-archimedean absolute value |−|v
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such that R = Ov. Let k be the field of fractions of R, and let | − |v be defined
as follows: let |0|v = 0, let |u|v = 1 for all units u ∈ R, and for all other x ∈ R,
let |x|v = exp(−n), where n is the unique positive integer such that (x) = mn.

Extend |−|v to a function on all of k in the obvious way by setting
∣∣∣xy ∣∣∣

v
= |x|v
|y|v for

all nonzero x, y ∈ R. One readily checks that |− |v satisfies positive-definiteness
and multiplicativity. To see that the ultra-metric inequality holds, observe that
if (x) = (tm) and (y) = (tn) where m ≤ n are nonnegative integers (here, we
are abusing notation slightly by taking the zeroth power of an element to be
1), then (x + y) ⊂ (tm), so |x + y|v ≤ exp(−m) = max{|x|v, |y|v}, as desired.
Observe that by construction we have |x|v ≤ 1 if and only if x ∈ R, so R = Ov

and m = pv. Lastly, to see that | − |v is discrete, it suffices by Lemma 20 to
check that pv = m is principal, but we already proved this. ♠
Remark. A generator of the maximal ideal in a DVR is often called a uniformiz-
ing parameter, or uniformizer for short.

We conclude this subsection with an example describing the valuation ring of
the p-adic norm:

Example 22. Consider the p-adic norm | − |p on Q. Since | − |p is non-
archimedean, we can compute its valuation ring Op, valuation ideal pp, and
residue field κp. We claim that Op = Z(p) (the localization of Z away from the
ideal (p)), that pp = pZ(p), and that κp = Fp. Indeed, observe that if x ∈ Z(p),
then we can write x = a

s
for a ∈ Z and s ∈ Z \ (p), from which it is easy to

see that |x|p ≤ 1, with strict inequality when x is divisibly by p; it follows that
Op = Z(p) (this is often called the ring of p-adic integers) and pp = pZ(p). To
show that κp = Fp, we must show that Z(p)/pZ(p) ' Fp, but this follows from
the fact that localization is an exact functor.

Note that because |−|p is discrete, the ring Op = Z(p) is a DVR. This can also
be deduced by observing that Z is both Noetherian and Dedekind, so localizing
Z away from a prime ideal will always yield a DVR. ♣

3. Completions and Finite Extensions

Recall that in Section 1, we showed that the field Qp of p-adic numbers is a
proper extension of Q by considering the formal finite-tailed Laurent series∑

n≥0

anp
n,

where for each n ≥ 0 we took an to be such that
∑n

i=0 aip
i is a solution to

f(x) ≡ 0 (mod pn), with f being a quadratic polynomial that is irreducible
over Q. Notice that the sequence of partial sums {

∑n
i=0 aip

i}n∈N is Cauchy

in the p-adic norm; indeed, |
∑n

i=m aip
i|p ≤ p−m for all nonnegative integers

m ≤ n. It follows that Q is not complete in the metric given by the p-adic
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norm. In this section, will study the completions of fields with respect to the
topologies induced by absolute values. After a brief interlude on characterizing
archimedean valued fields, we will use our understanding of completions to study
finite extensions of valued fields.

3.1. Completions. If an absolute value |− |v on a field k gives rise to a metric
on k, then we could decide whether k is complete or not by simply viewing it as
a metric space and appealing to the already-developed theory of completions on
metric spaces. However, only absolute values satisfying the triangle inequality
give rise to well-defined metrics, so we shall start from scratch. We begin by
defining what it means for a valued field to be complete:

Definition 23. We say that a field k is complete with respect to an absolute
value | − |v if it is complete with respect to the topology induced by | − |v (i.e.
for every sequence {an}n∈N ⊂ k such that |an − am| → 0 as m,n → ∞, there
exists a ∈ k such that limn→∞ an = a).

Notice that the property of being complete with respect to an absolute value is
preserved under equivalence of absolute values (this can be seen either by appeal-
ing to Lemma 8 or by directly applying the definition of equivalence). We can
therefore replace our absolute values with ones satisfying the triangle inequality,
while still keeping our field complete. The following theorem tells us that every
valued field can be embedded in a nice way into a complete valued field:

Theorem 24. Let | − |v be an absolute value on a field k. There exists a
unique field extension k of k and absolute value | − |v′ on k such that k is
complete with respect to | − |v′, such that |x|v′ = |x|v for all x ∈ k, and
such that k is dense in k.

Proof. We may assume that | − |v satisfies the triangle inequality, so that k is a
metric space with respect to the metric induced by |−|v. Let K be the set of all
sequences in k that are Cauchy with respect to | − |v, and observe that K is a
ring under the operations of termwise addition and multiplication. Let M ⊂ K
be the set of all sequences in k that are not only Cauchy, but also converge to
0 with respect to | − |v, and observe that M is a maximal ideal of K. Take
k = K/M , notice that k embeds in K/M as the subfield of equivalence classes
of constant sequences with values in k, and let |− |v′ be defined by continuously
extending | − |v to all of K/M . It is now not difficult to check that k satisfies
the necessary properties. Indeed, the field k, viewed as a metric space, is the
completion of k with respect to the metric induced by | − |v, and the absolute
value | − |v′ restricts to | − |v on the subfield k. Uniqueness follows from the
fact that k is dense in k, so the field operations and absolute value must all
continuously extend from k to k and are therefore uniquely defined. ♠
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By the uniqueness statement of Theorem 24, there is no ambiguity in using
the notation | − |v to denote the absolute value on the completion k of a field k
with absolute value | − |v, so that is what we will do. The next lemma states
that the property of being non-archimedean is preserved by field extensions (and
hence by completions):

Lemma 25. Let | − |v be an absolute value on a field k, let ` be any field
extension of k, and let | − |v′ be an absolute value on ` that extends | − |v. Then
| − |v is non-archimedean if and only if | − |v′ is non-archimedean. Moreover, if
| − |v is indeed non-archimedean, we have {|x|v : x ∈ k} = {|x|v : x ∈ k}.

Proof. By Lemma 11, an absolute value | − |v is non-archimedean if and only
if |n|v ≤ 1 for all n =

∑n
i=1 1. Clearly, this property is preserved by taking

field extensions and by restricting to subfields, so we have the first statement.

For the second statement, take y ∈ k
×

. Then there exists x ∈ k such that
|x− y|v < |y|v, so by Lemma 13 we have |x|v = |y|v. It follows that {|x|v : x ∈
k} ⊃ {|x|v : x ∈ k}, and the reverse containment is obvious, so we are done. ♠

Remark. It follows from the second statement Lemma 25 that the property of a
non-archimedean absolute value being discrete is preserved under completions.

The following theorem can be viewed as a generalization of the Chinese Re-
mainder Theorem and tells us that inequivalent absolute values are about as
independent as possible:

Theorem 26 (Weak Approximation). Let |−|1, . . . , |−|N be a list of nontrivial,
inequivalent absolute values, and let kn denote the completion of k with respect
to | − |n. Then the image of k under the diagonal embedding ∆ : k ↪→

∏N
n=1 kn

is dense.

Proof. Fix ε > 0, and take (y1, . . . , yN) ∈
∏N

n=1 kn. Choose (x1, . . . , xN) ∈
kN ⊂

∏N
n=1 kn such that |xn − yn|n < ε for all n ∈ {1, . . . , N}. Suppose for

every n ∈ {1, . . . , N} that there exists tn ∈ k such that |tn|n > 1 but |tn|m < 1
for all m 6= n. Then for all n ∈ {1, . . . , N} we have

lim
r→∞

trn
1 + trn

→

{
1 w.r.t | − |n,
0 w.r.t. | − |m for m 6= n

It follows that for sufficiently large r we have∣∣∣∣∣xm −
N∑
n=1

trn
1 + trn

· xn

∣∣∣∣∣
m

< ε ⇒

∣∣∣∣∣ym −
N∑
n=1

trn
1 + trn

· xn

∣∣∣∣∣
m

< 2ε

for every m ∈ {1, . . . , N}, in which case we would be done. All that remains is
to construct the desired tn’s, for which we will resort to induction. Note that
we only need to construct t1, as the argument will be the same for t2, . . . , tN . If
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N = 2, then since |− |1 and |− |2 are inequivalent, there exist a, b ∈ k such that
|a|1 < |b|1 and |a|2 < |b|2, so we can take t1 = a

b
. If N ≥ 3, by induction, there

exists t′1 such that |t′1|1 > 1 and |t′1|m < 1 for all m ∈ {1, . . . , N − 1}. Take t′′1
with |t′′1|1 > 1 and |t′′1|N < 1. We may then take t1 to be given as follows:

t1 =


t′1 if |t1|N < 1,

(t′1)r · t′′1 for large enough r if |t′1|N = 1,
(t′1)r

1+(t′1)r
· t′′1 for large enough r if |t′1|N > 1

One verifies that the above selection for t1 works, so we have the theorem. ♠

We will now study the case when our absolute value | − |v on k is non-
archimedean. Let Ov, pv, and κv denote the valuation ring, valuation ideal,
and residue field, respectively, of the completion k. Observe that we have the
following commutative square, with the horizontal maps given by projection
and the vertical map Ov ↪→ Ov given by inclusion:

Ov κv

Ov κv

φ

The composite map Ov → κv (given by going down and then right in the above
diagram) clearly has kernel pv, so we obtain an injective map φ : κv → κv;
indeed, any extension of non-archimedean valued fields gives rise to an extension
of the corresponding residue fields. We claim that φ is also surjective, and hence
an isomorphism. To see why this claim holds, take a nonzero y ∈ Ov. Then
there exists x ∈ k such that |x−y|v < |y|v, so by Lemma 13 we have |x|v = |y|v,
implying that x ∈ Ov. But |x− y|v < |y|v ≤ 1, so x− y ∈ pv. It follows that φ
takes the class of x in κv to the class of y in κv. We deduce that φ is surjective.

Suppose further that our absolute value | − |v is discrete. Recall in this case
that the valuation ring Ov is a DVR with principal maximal ideal pv, generated
by a uniformizer that we shall call πv. Then by Proposition 21, every x ∈ k can
be expressed as x = u · πnv , where u ∈ O×v and n ∈ Z, with n ≥ 0 if and only if
x ∈ Ov. The integer n is called the order of x and is independent of the choice
of uniformizer πv.

We can compute pv in terms of our uniformizer πv. Take y ∈ pv, and let
{xn}n∈N ⊂ k be a sequence converging to y. Then Lemma 13 tells us that
for sufficiently large n we have |xn|v = |y|v, implying that xn ∈ pv. Thus, πv
divides xn for sufficiently large n, and so πv divides y. Since πv ∈ pv ⊂ pv, we
conclude that pv = (πv), as an ideal of the ring Ov. Therefore, Ov is a DVR
with principal maximal ideal pv = (πv). Again, by Proposition 21, every y ∈ k
can be expressed as y = u · πnv , where u ∈ Ov

×
and n ∈ Z.
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As we might expect, we can express each element of Ov as a power series
in πv with coefficients in Ov. Take y ∈ Ov, and let S ⊂ Ov be a system of
representatives of κv. By definition, there exists a unique a0 ∈ S such that
y ≡ a0 (mod pv), and there exists a unique a1 ∈ S such that π−1

v (y − a0) ≡ a1

(mod pv). Continuing in this manner, we obtain a sequence {an}n∈N of elements
of S such that y ≡

∑n
i=0 aiπ

i
v (mod pn+1

v ) for each n ∈ N. It follows that up

to our choice of representatives S, we can uniquely express any y ∈ Ov as
y =

∑∞
n=0 aiπ

i
v (the convergence of this series is manifest). We deduce that

every y ∈ k can be uniquely expressed as y =
∑

n≥n0
aiπ

i
v for some n0 ∈ Z,

because we can write y as y = u · πn0
v for u ∈ Ov and write u as u =

∑∞
n=0 aiπ

i
v.

In this case where κv is a finite field, we can say something interesting about
the topology of the valuation ring Ov:

Proposition 27. Let | − |v be a discrete, non-archimedean absolute value on a
field k, and suppose k is complete with respect to | − |v. Then Ov is compact if
and only if κv is finite.

Proof. Notice first that x+ pv is an open subset of k for any x ∈ k. Let S ⊂ Ov

be a system of representatives of κv. Then Ov =
⊔
a∈S(a + pv), which is a

covering of Ov by open sets. If Ov is compact, then the covering has a finite
subcover, which implies that S must itself be finite. On the other hand, suppose
κv is finite. To show that Ov is compact, we need only show that Ov is totally
bounded, because it is complete by assumption. Take ε ∈ R>0, and let n ∈ N
be so large that |πv|n+1

v < ε. Since κv is finite, there are only finitely many
elements of Ov having the form

∑n
i=0 aiπ

i
v with ai ∈ S for all i ∈ {0, . . . , n− 1}.

But every element of Ov is within ε of such an element, because if ai ∈ S for all
i ≥ n+ 1 we have by the ultra-metric inequality that∣∣∣∣∣ ∑

i≥n+1

aiπ
i
v

∣∣∣∣∣
v

≤
∑
i≥n+1

|ai|v · |πv|iv ≤ |πv|n+1
v < ε.

It follows that Ov is complete and totally bounded, hence compact. ♠

It follows from Proposition 27 that k is locally compact, because any translate
x+Ov for x ∈ k must be compact; such fields are known more generally as local
fields. We conclude this section by discussing our results in the all-too-familiar
context of the p-adic norm.

Example 28. In the case of the p-adic norm, we have Op = Z(p), pp = (p), and
κp = Fp, so we can take S = {0, . . . , p− 1}. Taking p to be our uniformizer, we
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have proven that

Z(p) =

{
∞∑
n=0

anp
n : an ∈ {0, . . . , p− 1}

}
, and

Q =

{
∞∑

n≥n0

anp
n : an ∈ {0, . . . , p− 1}, n0 ∈ Z

}
,

where by Q we mean the completion of Q with respect to the p-adic norm. Note
that in this case, the residue field is finite, so Z(p) is compact, and Q is a local
field. But recall that we had defined the field Qp of p-adic numbers to be the set
of all formal finite-tailed Laurent series in p with coefficients in {0, . . . , p − 1}.
It follows that Qp is none other than the completion of Q with respect to the
p-adic norm. ♣

We have now accomplished what we set out do to; indeed, our motivation
for introducing absolute values in the first place was to provide a more natural
construction for the field Qp of p-adic numbers. But along the way, we have
introduced so much theory and opened up so many possibilities for discussion
that we simply cannot stop here.

3.2. Finite Extensions. Recall that if k ↪→ ` is an extension of fields, then
we may view ` as a k-vector space; in particular, when the extension is finite,
` is a finite-dimensional vector space over k. One might hope that we can use
this fact to construct absolute values on ` given absolute values on k. In this
light, we shall now introduce the theory of normed vector spaces to study finite
extensions. Recall that the standard way of putting a measure of size on a
vector space is to introduce a norm, which is defined as follows:

Definition 29. Let | − |v be an absolute value on a field k, and let V be a
k-vector space. A norm on k is a function || − || : V → R≥0 that satisfies the
following three properties:

(1) Positive-definiteness: ||w|| = 0 if and only if w = 0.
(2) Scalar Multiplication: ||xw|| = |x|v · ||w|| for all x ∈ k and w ∈ V .
(3) Triangle Inequality: ||w + w′|| ≤ ||w||+ ||w′|| for all w,w′ ∈ V .

The vector space V , along with the norm ||−||, is known as a normed vector space.

Notice that norms (see Definition 29) are defined in a way that is very similar
to how absolute values are defined (see Definition 1), so it is reasonable to expect
that we can use norms to construct absolute values on field extensions. Just
as with absolute values that satisfy the triangle inequality, a norm on a vector
space V gives rise to a metric on V , defined in the obvious way. Finally, norms
have a notion of equivalence just like absolute values do: we say that two norms
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|| − ||1 and || − ||2 on a vector space V are equivalent if there exist positive

constants C1 < C2 such that ||w||1||w||2 ∈ [C1, C2] for all w ∈ V \ {0}.
The next proposition roughly states that under certain conditions, there is

essentially only one norm on a vector space V :

Proposition 30. Let | − |v be an absolute value on a field k with respect to
which k is complete. If V is a finite-dimensional k-vector space, then any two
norms on V are equivalent.

Proof. We will construct a specific norm || − ||0 on V and then prove that any
other norm must be equivalent to || − ||0. Take a basis (b1, . . . , bn) of V , and
define ||a1b1 + · · · + anbn||0 = max{|ai|v : i ∈ {1, . . . , n}} for all a1, . . . , an ∈ k.
It is easy to check that || − ||0, as defined, is a norm on V (it clearly satisfies
the three defining properties of a norm).

Now let || − || be any norm on V . Clearly we have that∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

aibi

∣∣∣∣∣
∣∣∣∣∣ ≤

n∑
i=1

|ai|v · ||bi|| ≤

(
n∑
i=1

||bi||

)
·

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

aibi

∣∣∣∣∣
∣∣∣∣∣
0

.

Taking C2 =
∑n

i=1 ||bi|| > 0 yields that ||w||
||w||0 ≤ C2 for all w ∈ V \ {0}. Suppose

we cannot find a positive constant C1 ≤ C2 such that ||w||||w||0 ≥ C1 for all w ∈ V \
{0}. Then for every positive integer j > 0, there exist elements a′1,j, . . . , a

′
n,j ∈ k

such that

0 <

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

a′i,jbi

∣∣∣∣∣
∣∣∣∣∣ ≤ 1

j
·

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

a′i,jbi

∣∣∣∣∣
∣∣∣∣∣
0

.

We may assume without loss of generality that 1 = |a′1,j|v = max{|a′i,j|v : i ∈
{1, . . . , n}} for infinitely many j. It follows that for each i ∈ {2, . . . , n}, there
exist sequences {ai,j}j∈N such that

(4) lim
j→∞

∣∣∣∣∣
∣∣∣∣∣b1 +

n∑
i=2

ai,jbi

∣∣∣∣∣
∣∣∣∣∣ = 0, and lim

j,k→∞

∣∣∣∣∣
∣∣∣∣∣
n∑
i=2

(ai,j − ai,k)bi

∣∣∣∣∣
∣∣∣∣∣ = 0.

We now proceed by induction. The proposition is obvious in the case when
n = 1, for then we can take C1 = ||b1||. Suppose n ≥ 2, and assume by induction
that the proposition holds on the subspace span(b2, . . . , bn). Then (4) implies
that limj,k→∞ |ai,j − ai,k|v = 0 for each i ∈ {2, . . . , n}. Thus, the sequences
{ai,j}j∈N are all Cauchy, so since k is complete, for each i ∈ {2, . . . , n} there
exists ci ∈ k such that limj→∞ ai,j = ci. But then we have that

0 <

∣∣∣∣∣
∣∣∣∣∣b1 +

n∑
i=2

cibi

∣∣∣∣∣
∣∣∣∣∣ ≤ lim

j→∞

∣∣∣∣∣
∣∣∣∣∣b1 +

n∑
i=2

ai,jbi

∣∣∣∣∣
∣∣∣∣∣+

∣∣∣∣∣
∣∣∣∣∣
n∑
i=2

(ci − ai,j)bi

∣∣∣∣∣
∣∣∣∣∣ = 0,

which is a contradiction. ♠
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Remark. As it happens, the topology of V with respect to the metric induced
by || − ||0 is none other than the product topology on V ' kn, where the
identification is given by the choice of basis. To see why, take a1, . . . , an ∈ k.
The open ball of radius r centered at a1b1 + · · ·+ anbn ∈ V is given by

{c1b1 + · · ·+ cnbn : |ci − ai|v < r for all i ∈ {1, . . . , n}}.
It is clear that the above set is simply the product over each factor of k in
V ' kn of the open ball of radius r centered at ai. Thus, every set that is open
in the metric topology on V is open in the product topology on V ' kn. For
the reverse containment, suppose we have an open ball Bi of radius ri centered
at ai in each factor of k in V ' kn. Let r = min{ri : i ∈ {1, . . . , n}}, and for
each i, choose a covering

⋃
αi∈Ai Bαi of Bi by open balls Bαi of radius r such

that Bαi ⊂ Bi for all αi ∈ Ai. Then we have that
n∏
i=1

Bi =
⋃

α1∈A1

· · ·
⋃

αn∈An

n∏
i=1

Bαi ,

and the set on the right-hand-side of the above equality is clearly open in the
metric topology on V .

Also, the proof of Proposition 30 is quite a bit simpler in the case where |− |v
is discrete and non-archimedean with finite residue field κv and k is complete
with respect to | − |v. For in this case, we can appeal to Proposition 27 and
utilize compactness along with the Extreme Value Theorem to obtain the de-
sired bounds C1 and C2. In fact, this alternative method of proof works for
any locally compact valued field, and hence over the fields R and C equipped
with the archimedean absolute value (that these fields are locally compact is
geometrically obvious).

Proposition 30 has the following important consequence for finite extensions
on our field k:

Corollary 31. Let |−|v be an absolute value on a field k such that k is complete
with respect to | − |v. If k ↪→ ` is a finite extension, then there exists a unique
absolute value | − |v′ on ` whose restriction to k is | − |v. In particular, setting

[` : k] = n, then we can take |x|v′ =
∣∣Nm`/k(x)

∣∣ 1n
v

.

Remark. In the following proof, we will assume that k is locally compact. Note

that |x|v′ =
∣∣Nm`/k(x)

∣∣ 1n
v

is a well-defined absolute value on ` even in the case
when k is not locally compact. The proof, however, is somewhat more laborious,
and the case when k is locally compact is of particular importance in the theory.

Proof. We deal with uniqueness first. Suppose we have two different absolute
values | − |v′ and | − |v′′ whose restriction to k is given by | − |v. Let c ∈ R>0

be such that | − |cv, | − |cv′ , and | − |cv′′ all satisfy the triangle inequality. Then
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| − |cv′ and | − |cv′′ are norms on `, viewed as a k-vector space, and note that k
is still complete with respect to | − |cv. But by Proposition 30, the norms | − |cv′
and | − |cv′′ are equivalent, and hence the absolute values | − |v′ and | − |v′′ must
be the same.

For existence, we need to check that |x|v′ =
∣∣Nm`/k(x)

∣∣ 1n is an absolute value
on ` whose restriction to k is | − |v. Positive-definiteness and multiplicativity
follow immediately from the definition of Nm`/k(x) as the determinant of the
map of multiplication by x on `, viewed as a k-vector space. We must now show
that there exists a constant C ∈ R≥1 such that |x|v′ ≤ 1 implies |1 + x|v′ ≤ C.
Recall the norm || − ||0 defined in the proof of Proposition 30, and put this
norm on `, viewed as a k-vector space. One can check that | − |v′ is continuous
with respect to topology given by || − ||0, and in particular, it is continuous
on the set S = {x ∈ ` : ||x||0 = 1}, which is compact because we assumed
k to be locally compact. Thus, there exist positive constants C1 < C2 with

C1 ≤ ||x|| ≤ C2 for all x ∈ S, so C1 ≤ ||x||
||x||0 ≤ C2 for all x ∈ `. We can then

take C = C2(||1||0 + C−1
1 ). ♠

Corollary 32. Under the assumptions of Corollary 31, ` is complete with re-
spect to | − |v′.

Proof. By Proposition 30, the norm given by | − |v′ is equivalent to the norm
|| − ||0 (which we defined in the proof of Proposition 30). As we showed earlier,
the topology given by || − ||0 is the product topology, so ` ' kn is the product
of n complete metric spaces and is therefore complete. ♠

We have just shown that under finite field extensions, absolute values on
complete fields extend in a unique way. However, the situation when our base
field is not complete is considerably more complicated; in this case, the following
theorem tells us that an absolute value can extend in more than one way under
a finite field extension:

Theorem 33. Fix |− |v an absolute value on a field k, and let k ↪→ ` be a finite
separable extension of degree [` : k] = n. Then there are at most n extensions of
| − |v to `, which we will denote by | − |v1 , . . . , | − |vN . Furthermore, let k denote
the completion of k with respect to | − |v, and let `vi denote the completion of `
with respect to | − |vi for each i ∈ {1, . . . , N}. Then

k ⊗k ` '
N⊕
i=1

`vi .

Proof. By the Primitive Element Theorem (which applies because the extension
k ↪→ ` is separable; see Appendix 6 for a statement and proof), we can write
` = k(α) for some α ∈ `. Let f ∈ k[x] be the minimal polynomial of α over k,
and let N = deg f . Then ` ' k[x]/(f), so k ⊗k ` ' k[x]/(f). Now suppose f
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factors over k as f =
∏J

i=1 gi, where each gi ∈ k[x] is irreducible and the gi’s
are all pairwise distinct (because the extension k ↪→ ` is separable). Then we
have that

k ⊗k ` ' k[x]/(f) '
J⊕
i=1

k[x]/(gi).

Let ˜̀i = k[x]/(gi) for each i ∈ {1, . . . , J}. We shall prove that the two sets

{˜̀i : i ∈ {1, . . . , J}} and {`vi : i ∈ {1, . . . , N}} are one and the same.
Consider the obvious map ` ↪→ k⊗k ` given by y 7→ 1⊗y. Postcomposing this

map with the projection from k ⊗k ` onto the factor ˜̀i yields a field extension

` ↪→ ˜̀
i (this map is injective because the map ` ↪→ k⊗k `� ˜̀

i is a composition
of ring homomorphisms whose source is a field). Note that the embedding
` ↪→ k ⊗k ` is dense because ` ' k ⊗k ` and k is dense in k. It follows that
the embedding ` ↪→ ˜̀

i is also dense. But ˜̀i is a finite extension of k for each

i ∈ {1, . . . , J}, so by Corollaries 31 and 32, ˜̀i is complete with respect to a

unique absolute value | − |vi′ on ˜̀i whose restriction to k gives | − |v. We

deduce that ˜̀i is the completion of ` with respect to | − |vi′ . It follows that

{˜̀i : i ∈ {1, . . . , J}} ⊂ {`vi : i ∈ {1, . . . , N}}.
For the reverse containment, suppose an absolute value | − |v′ on ` is an

extension of | − |v on k. Then by continuity we can extend | − |v′ to a multi-
plicative function on the ring k ⊗k `, and we can subsequently restrict | − |v′
to any of the ˜̀i’s. If |xi|v′ = 0 for some nonzero xi ∈ ˜̀i, then the restriction

of | − |v′ to ˜̀i is identically 0, but otherwise one can check that it does give

an absolute value on ˜̀i. But | − |v′ cannot possibly give an absolute value on

more than one of the ˜̀i’s, because otherwise by taking xi ∈ ˜̀×i and xj ∈ ˜̀×j ,
we would have that |xi|v′ · |xj|v′ = 0 which is a contradiction. It follows that
there exists a unique i ∈ {1, . . . , J} for which | − |v′ gives an absolute value on˜̀
i, and by Corollary 31, | − |v′ must restrict to | − |vi′ on ˜̀i. It follows that

{˜̀i : i ∈ {1, . . . , J}} ⊃ {`i : i ∈ {1, . . . , N}}. ♠

The next corollary demonstrates how we might use the result of Theorem 33
to compute the trace and norm of a finite extension of valued fields:

Corollary 34. Retain the setting of Theorem 33. Then for any α ∈ ` we have

Tr`/k(α) =
N∑
i=1

Tr`vi/k
(α) and Nm`/k(α) =

N∏
i=1

Nm`vi/k
(α).

Proof. Since the trace (resp. determinant) of a block-diagonal matrix is the sum
(resp. product) of the traces (resp. determinants) of the blocks, to prove the
corollary it suffices to show that the trace and determinant maps are preserved
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under tensoring up from ` to k ⊗k `. Indeed, if (ω1, . . . , ωn) is a basis of ` as a
k-vector space, let Ma denote the corresponding matrix of the map ma : `→ `
of multiplication by a. Then the map ma ⊗ id : `⊗k k → `⊗k k has matrix Ma

with respect to the basis (ω1 ⊗ 1, . . . , ωn ⊗ 1). Since trace and determinant are
independent of the choice of basis, the trace and determinant of ma are equal
to the trace and determinant of ma ⊗ id. Thus, we have the corollary. ♠

We will explore what the above-developed theory of absolute values tells us
about number fields in the next section.

4. Number Fields

A number field is, by definition, a finite extension of the field Q of rational
numbers. In Section 3.2, we studied finite extensions of valued fields, so to
understand number fields, it seems reasonable to start off by asking what our
theory of absolute values tells us about Q itself. The following theorem states
that the standard and p-adic absolute values are the only absolute values that
we can put on Q:

Theorem 35 (Little Ostrowski). Let | − |v be an absolute value on Q. If | − |v
is non-archimedean, then | − |v is equivalent to a p-adic norm. Otherwise, if
| − |v is archimedean, then | − |v is equivalent to the standard absolute value.

Proof. Suppose first | − |v is non-archimedean. Consider the ideal I = {n ∈
Z : |n|v < 1} ⊂ Z (which is an ideal because of the ultra-metric inequality
and because Lemma 11 tells us that |n|v ≤ 1 for all n ∈ Z), and note by the
multiplicativity of absolute values that I must be prime. Writing I = (p) for a

prime number p, we see that |x|v S 1 if and only if |x|p S 1 for all x ∈ Q, which

implies that | − |v is equivalent to the p-adic norm.
Now suppose | − |v is archimedean, and assume that it satisfies the triangle

inequality. Given x, y ∈ Z with x ≥ 2 and y > 0, we can write y in base-x
as y =

∑m
i=0 aix

i, where ai ∈ {0, . . . , a − 1} for all i ∈ {0, . . . ,m} and where
m ≤ logx y. The triangle inequality tells us that

|y|v ≤ (logx y + 1) ·max{|ai|v : i ∈ {0, . . . ,m}} ·max{1, |x|(logx y)
v }.

Replace y with zn; we will apply the trick of taking nth roots and sending
n→∞. Doing so yields that

|z|v ≤ lim
n→∞

(n logx z + 1)
1
n · (max{|ai|v : i ∈ {0, . . . ,m}})

1
n ·
(
max{1, |x|n(logx z)

v }
) 1
n

= max{1, |x|(logx z)
v }.

Since |−|v is archimedean, by Lemma 11 there exists z ∈ Z>0 such that |z|v > 1.

It follows that for any x ∈ Z≥2, we have |x|(logx z)
v > 1, which implies that |x|v > 1
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for all x ∈ Z≥2. Thus, we have that

|z|v ≤ |x|(logx z)
v ≤ |z|(logz x)·(logx z)

v ⇒ |z|
1

log z
v = |x|

1
log x
v ⇒ log |z|v

log |z|∞
=

log |x|v
log |x|∞

for all x, z ∈ Z≥2. It then follows that | − |v is equivalent to the standard
absolute value. ♠

Now that we know exactly what absolute values can be put on Q, we can
proceed to study absolute values on number fields more generally. Nevertheless,
it will be fruitful to pause our discussion of number fields to address a case
that we have thus far largely ignored, that of the archimedean absolute value.
Following this aside, we will conclude the section by characterizing archimedean
and non-archimedean absolute values on number fields.

4.1. An Archimedean Aside. In this subsection, we will perform a detailed
study of archimedean valued fields. To begin with, we will use Theorem 35 to
provide a computation of the Artin constant for any valued field; of course, this
is only interesting in the archimedean case.

Theorem 36 (Artin). Let | − |v be an absolute value on a field k. Then the
Artin constant of | − |v on k is 1 if | − |v is non-archimedean and |2|v if | − |v
is archimedean. In particular, if ` is a subfield of k, then the Artin constant of
the restriction of | − |v to ` is the same as the Artin constant of | − |v on k.

Proof. The second statement will follow immediately once we have proven the
first statement. Notice that the first statement is obvious when | − |v is non-
archimedean, because such absolute values have Artin constant 1 by defini-
tion. We may therefore restrict our consideration to the case where | − |v is
archimedean. In this case, Corollary 12 tells us that k must have characteristic
0, so k contains a subfield isomorphic to Q. Note that the restriction of | − |v
to Q must be equivalent to the standard absolute value, since by Lemma 25
the restriction to Q must be archimedean and by Theorem 35 there is only one
archimedean place on Q. Thus, there exists a > 0 such that | − |v = | − |a∞ on
Q, and if C ∈ R≥1 denotes the Artin constant of | − |v, there exists b > 0 such
that C = 2b. It suffices to prove that a = b, for then | − |v would have Artin
constant 2a = |2|a∞ = |2|v, as desired. To prove that a = b, we will imitate the
argument used to prove Lemma 4.

For x, y ∈ k and x1, . . . , xm ∈ k, the modified triangle inequality tells us that

|x+ y|v ≤ 2b ·max{|x|v, |y|v}, and

|x1 + · · ·+ xm|v ≤ (2m)b ·max{|xi| : i ∈ {1, . . . ,m}}.
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It follows that for any n ∈ Z≥0 we have

|x+ y|nv = |(x+ y)n|v =

∣∣∣∣∣
n∑
i=0

(
n

i

)
xiyn−i

∣∣∣∣∣
v

≤ (2(n+ 1))b ·max

{∣∣∣∣(ni
)∣∣∣∣

v

· |xi|v · |yn−i|v : i ∈ {0, . . . , n}
}

= (2(n+ 1))b ·max

{(
n

i

)a
· |xi|v · |yn−i|v : i ∈ {0, . . . , n}

}
≤ (2(n+ 1))b · 2an ·

(
max{|x|v, |y|v}

)n
,

so taking nth roots and sending n → ∞ as usual tells us that |x + y|v ≤ 2a ·
max{|x|v, |y|v}. It follows that 2b ≤ 2a. But 2a = |1+1|v ≤ 2b ·max{|1|v, |1|v} =
2b, so a = b, which is the desired result. ♠

The next theorem tells us roughly that all archimedean valued fields are
subfields of C and that the only archimedean absolute value is the standard one;
our proof relies on many of the main results we have already proven, including
Theorems 35 and 36:

Theorem 37 (Big Ostrowski). Let k be a field equipped with an archimedean
absolute value | − |v. Then k is isomorphic to a subfield of C, with absolute
value given by the restricting the standard absolute value. In particular, if k is
complete with respect to | − |v, then k is isomorphic to either R or C.

Proof. Recall the setup: we have an archimedean absolute value |− |v on a field
k. Theorem 24 tells us that there exists a completion k of k, so it suffices to
consider the case where k is complete with respect to |−|v. Now, by Corollary 12,
k must have characteristic 0. Thus, k contains a subfield isomorphic to Q, so
we can think of k as being an extension of Q.

We claim that we can replace | − |v with an equivalent absolute value that
satisfies the triangle inequality and whose restriction to Q gives the standard
absolute value. As in the proof of Theorem 36, the restriction of |−|v to Q must
be equivalent to the standard absolute value. We may therefore replace |−|v with
an equivalent absolute value whose restriction to Q gives the standard absolute
value. By Theorem 36, we know that the Artin constant of the restriction of
| − |v to Q is the same as the Artin constant of | − |v on k, so since the Artin
constant of the standard absolute value is 2, the Artin constant of | − |v on k is
also 2; it follows that | − |v satisfies the triangle inequality.

Because the completion of Q under the standard absolute value is R, we see
that k contains a subfield isomorphic to R, on which the absolute value | − |v is
simply the standard absolute value. Now, if k has a square root of −1 (call it i),
then k contains a subfield isomorphic to C. We claim that |a+ bi|v =

√
a2 + b2
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for all a, b ∈ R. To prove this claim, write a+ bi =
√
a2 + b2(cos θ + i sin θ) for

θ ∈ [0, 2π). Then by the triangle inequality,

|(a+ bi)n|v = (a2 + b2)
n
2 · | cosnθ + i sinnθ|v

≤ (a2 + b2)
n
2 ·
(
| cosnθ|+ | sinnθ|

)
≤ (a2 + b2)

n
2 ·
√

2.

Taking nth roots on both sides and taking the limit as n → ∞, we find that
|a + bi|v =

√
a2 + b2. On the other hand, if k does not contain i =

√
−1, then

we can adjoin i to k and extend the absolute value | − |v to k(i) by |a+ bi|v =√
|a|2v + |b|2v for all a, b ∈ k. It is clear that the extended valuation | − |v is in

fact a valuation and that k(i) is complete with respect to this valuation.
We now observe that regardless of whether k has i =

√
−1, it suffices to

show that k(i) ' C, for if i 6∈ k then k(i) ' C ⇒ k ' R. Suppose we have
x ∈ k(i) such that x 6∈ C. We will first show that there exists y ∈ C such that
|x−y|v = α := infz∈C |x−z|v. Consider the set A = {z ∈ C : |z|v ≤ |x|v+α+ε}
for some ε > 0. We have that A is a closed, bounded, and nonempty subset of
C and hence the continuous function f(z) = |x− z|v attains a minimum value
at some y ∈ A, as desired. Let r = x − y. We then have that r 6∈ C and
α = |r|v ≤ |x− (z + y)|v = |r − z|v for all z ∈ C.

Let z ∈ C be arbitrary, and observe that we have the following inequalities:(
|z|nv
αn

+ 1

)
αn = |r|nv + |z|nv ≥ |rn − zn|v =

∣∣∣∣∣
n−1∏
i=0

(r − ζ iz)

∣∣∣∣∣
v

≥ |r − z|v · αn−1.

Dividing through by αn−1 yields that

|r − z|v ≤ α

(
|z|nv
αn

+ 1

)
.

Suppose |z|v < α. Taking the limit as n → ∞ of the above inequality yields
that |r− z|v ≤ α⇒ |r− z|v = α. Applying the above reasoning with r replaced
by r − z, we see that yields that for any z′ ∈ C with |z′|v < α, we have that
|r − z − z′|v = α. It follows by induction that |r −mz|v = α if |z|v < α. Since
every complex number can be written as an integral multiple of a number with
absolute value less than α, we have that |r − z|v = α for all z ∈ C. But then

|z − z′|v = |z − r + r − z′|v ≤ |z − r|v + |r − z′|v = 2α

for all z, z′ ∈ C, but this is manifestly not the case, as we could take z = (2+ε)α
and z′ = 0 for any ε > 0. We have thus obtained a contradiction, so we have
showed that k(i) ⊂ C. It follows that k(i) ' C, as desired. ♠

This section was supposed to be about number fields, so we should probably
get back to studying number fields more closely. The following corollary applies
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a number of the results we have proven to characterizing archimedean absolute
values on a number field:

Corollary 38. Let k be a number field of degree [k : Q] = n. Then there are at
most n archimedean places on k.

Proof. Let | − |v be an archimedean absolute value on k. Combining Lemma 25
and Theorem 35, we deduce that | − |v must restrict to an absolute value that
is equivalent to the standard absolute value on Q. By Theorem 33, there exist
at most n absolute values on k that extend the standard absolute value on Q.
The corollary follows immediately. ♠

4.2. The Non-archimedean Case. As for non-archimedean absolute values
on a number field, we can say even more. Let k be a number field, and define
O′k to be the intersection over all non-archimedean absolute values | − |v of the
valuation rings Ov; i.e. we have

O′k = {x ∈ k : |x|v ≤ 1 for all non-archimedean | − |v}.

It turns out that O′k is not as strange a construct as it may seem; indeed the
following theorem tells us that O′k is none other than the ring of integers of k:

Theorem 39. Let Ok denote the integral closure of Z in k. Then Ok = O′k.

Proof. Since by Lemma 11 |n|v ≤ 1 for all non-archimedean absolute values
| − |v and n ∈ Z, we have that Z ⊂ O′k. Suppose x ∈ k is integral over Z (i.e.
x ∈ Ok), and let | − |v be a non-archimedean absolute value on k. We have that
xn +an−1x

n−1 + · · ·+a1x+a0 = 0 for some integers ai ∈ Z. If |x|v > 1, then we
have that |aixi|v ≤ |x|nv for all i, so by the ultra-metric inequality, we have that

0 = |xn + an−1x
n−1 + · · ·+ a1x+ a0|v ≤ |x|nv > 1,

which is a contradiction. Thus, we must have that |x|v ≤ 1 for all x ∈ Ok. It
follows that Ok ⊂ O′k.

Suppose x ∈ O′k \ Ok. If the (unique) factorization of the fractional ideal
(x) ⊂ k into primes p is given by

(x) =
∏
p

pep(x),

for ep(x) ∈ Z, then we have that ep1(x) < 0 for some p1, for otherwise x ∈ Ok.
Now, consider the absolute value | − |v that assigns to each y ∈ k the number
2−ep1 (y). One can readily check that v is a non-archimedean absolute value on
k, and clearly we have that |x|v = 2−ep1 (x) > 1, which contradicts the fact that
x ∈ O′k. Thus, we have that Ok ⊂ O′k and O′k \ Ok = ∅, from which we deduce
that Ok = O′k. ♠
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Of course, now that we have proven that Ok = O′k, we may unambiguously
adhere to the notation Ok. Theorem 39 is remarkable in that it allows us to
completely characterize what the non-archimedean absolute values on a number
field are, as we shall now see:

Theorem 40. The set of non-archimedean places on a number field k is in
natural bijection with the set of prime ideals in its ring of integers Ok.

Proof. In the following proof, we shall use Theorem 39 in order to view Ok as
both the ring of integers of k (so as to exploit unique factorization) and as the
intersection of valuation rings (so as to utilize properties of absolute values).

Given a prime ideal p ⊂ Ok, let |−|vp be the absolute value defined by |x|vp =

2−ep(x) for all x ∈ k (one readily checks that vp is a non-archimedean absolute
value on k). Given a non-archimedean place on k containing an absolute value
| − |v, let pv be the prime ideal of Ok defined by pv = {x ∈ Ok : |x|v < 1}. Note
that pv is prime for all | − |v because {x ∈ k : |x| < 1} is prime ideal in the ring
{x ∈ k : |x| ≤ 1}.

We first show that pvp = p for all prime ideals p ⊂ Ok. If x ∈ p, then
ep(x) > 0, so |x|vp < 1, which implies that x ∈ pvp . On the other hand, if
x ∈ pvp , then |x|vp < 1, which implies that ep(x) > 0, so x ∈ p. It follows that
pvp = p for all prime ideals p ⊂ Ok.

We now show that | − |vpv is equivalent to | − |v for all non-archimedean
absolute values | − |v. It suffices to show that | − |vpv and | − |v give rise to the
same valuation ring. If |x|v < 1, then x ∈ pv, so epv(x) > 0, which implies that
|x|vpv < 1. On the other hand, if |x|vpv < 1, then epv(x) > 0, which implies that
x ∈ pv, so |x|v < 1. It now remains to show that |x|v = 1 if and only if |x|vpv = 1.
If |x|v = 1 and |x|vpv > 1, then |1/x|vpv < 1, implying that |1/x|v < 1, which is
a contradiction, so |x|vpv = 1. On the other hand if |x|vpv = 1 and |x|v > 1, then
|1/x|v < 1, so we have that |1/x|vpv < 1, a contradiction implying that |x|v = 1.
It follows that | − |v is equivalent to | − |vpv . ♠

Remark. From the proof of Theorem 40, we see that the non-archimedean places
on a number field are represented by what one might call the p-adic absolute
values | − |vp , which are the natural analogues of the p-adic absolute values on
Q. In this light, Theorem 40, along with Corollary 38, may be viewed as a Little
Ostrowski Theorem for number fields. Note that the p-adic absolute values are
all discrete and give finite residue fields.

Corollary 41. Let k be a number field, and take α ∈ k×. Then there exist only
finitely many places containing an absolute value | − |v such that |α|v 6= 1.

Proof. By Corollary 38, there are only finitely many archimedean places on k,
so we can ignore them. As for the non-archimedean places, it follows from
Theorem 40 that the only non-archimedean absolute values | − |v with |α|v 6= 1
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belong to the places of the p-adic absolute values for the finitely many prime
factors p of the ideal (α). Hence, the corollary. ♠

Corollary 41 establishes a property that holds for all but finitely many ab-
solute values on a given number field. In accordance with the jargon of the
subject, we shall use the phrase “almost all” to mean “all but finitely many”
throughout the remainder of this article.

5. A Glimpse of Class Field Theory

In this section, we will introduce the tools necessary to define adeles and
ideles, which were introduced by French mathematician Claude Chevalley as
a means of systematizing class field theory, the subdiscipline of mathematics
concerned with studying abelian extensions of number fields. We will then use
the language of adeles and ideles to give a proof of Dirichlet’s Unit Theorem.

5.1. Restricted Topological Products. The primary tool we shall require
to define adeles and ideles is the restricted topological product, which is defined
as follows:

Definition 42. Let {Xλ}λ∈Λ be a collection of topological spaces indexed by
Λ, and take open subsets Uλ ⊂ Xλ for almost all λ ∈ Λ. As a set, the restricted
topological product X of the Xλ’s with respect to the Uλ’s is the subset of∏

λ∈ΛXλ given by sequences {σλ}λ∈Λ satisfying σλ ∈ Xλ for all λ ∈ Λ and
σλ ∈ Uλ for almost all λ ∈ Λ. The topology endowed upon X has, as a basis
of open sets, the products

∏
λ∈Λ Vλ, where Vλ ⊂ Xλ is open for all λ ∈ Λ and

Vλ = Uλ for almost all λ ∈ Λ.

Observe that the restricted product X remains unaltered if we replace finitely
many of the Uλ’s with open subsets U ′λ ⊂ Uλ. Moreover, if S ⊂ Λ is any finite
set such that Uλ is defined for all λ ∈ Λ \ S (we shall call such sets S “good”),
then setting XS =

∏
λ∈S Xλ ×

∏
λ∈Λ\S Uλ ⊂ X, we have that XS ⊂ X is open,

and the subspace topology on XS induced by X is none other than the product
topology. Moreover, the subspaces XS, where S ⊂ Λ ranges over all good sets,
form an open cover of X.

The case that will be of primary interest to us is where the spaces Xλ’s
are locally compact topological rings and the subspaces Uλ’s are compact open
subrings. The next lemma sheds some light on what happens, topologically
speaking, in this situation:

Lemma 43. We have the following (unrelated) properties:

(1) As before, let X be the restricted topological product of locally compact
topological spaces Xλ with respect to compact open subsets Uλ. Then XS

is locally compact for any good set S ⊂ Λ, so X is also locally compact.
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(2) Suppose that the Xλ’s are topological rings and that the Uλ’s are subrings.
Then X is also a topological ring.

Proof. For the first statement, that XS is locally compact for any good set S ⊂ Λ
follows immediately from our earlier observation that the subspace topology on
XS is just the product topology. Since the sets XS form a cover of X, we deduce
that X is itself locally compact.

For the second statement, we give X the structure of topological ring in the
obvious way by defining the operations of addition and multiplication compo-
nentwise. To check continuity of the ring operations, we may pass to a particular
open subset XS, where continuity is clear because XS is a product of topological
rings and bears the product topology. ♠

It may now be somewhat apparent what we intend to do with these restricted
topological products. Essentially, we want to take a number field, look at its
completions with respect to the absolute values that we can put on it, and
construct a restricted topological product out of them. The completions aris-
ing from archimedean absolute values are necessarily either R or C, which are
locally compact; the completions arising from non-archimedean (p-adic) abso-
lute values, all of which are discrete and give finite residue fields, are also locally
compact with compact open valuation rings by Proposition 27. But since equiv-
alent absolute values give the same completions, we only want one representative
from each place to incorporate into our restricted topological product. In or-
der to specify a distinguished absolute value from each place, we introduce the
following definition:

Definition 44. Let | − |v be an absolute value on a number field k. We say
that | − |v is normalized if:

(1) When |−|v is archimedean and the completion of k with respect to |−|v
is R, we have | − |v = | − |∞.

(2) When |−|v is archimedean and the completion of k with respect to |−|v
is C, we have | − |v = | − |2∞.

(3) When |− |v is discrete and non-archimedean with finite residue field, we
have |πv|v = 1/#(κv), where πv is a uniformizer. (Note that | − |v is
specified entirely by its value on πv.)

Remark. The motivation for the choice of representative made in Definition 44
stems from the theory of Haar measures on locally compact topological groups.
We omit a discussion of this subject because, with the exception of Theorem 58,
it is not necessary to understand the balance of the present article. For more
details on the Haar measure, one could refer to [1].

Example 45. We can now see why we defined the p-adic norm as we did in
Definition 6. Notice that |p|p = 1/p = 1/#(Fp), so in fact the p-adic norm was
chosen from its place of equivalent absolute values to be the normalized one. ♣
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We shall now investigate how normalized absolute values play with finite
extensions. The next lemma tells us what happens in the case when our base
field k is complete:

Lemma 46. Retain the setting of Corollary 31, and suppose |−|v is a normalized
absolute value. The normalized absolute value | − |ṽ on ` whose restriction to k
belongs to the place of | − |v is given by | − |ṽ = |Nm`/k(x)|v.

Proof. By Corollary 31, we know that | − |ṽ = |Nm`/k(x)|mv for some m ∈ R>0,
so we need only show that m = 1. In the archimedean case, this is obvious: the
only nontrivial situation is when k = R and ` = C, but then Nm`/k(x) = |x|2∞, as
desired. Now suppose | − |v is discrete and non-archimedean with finite residue
field κv. We claim that | − |ṽ is also discrete and non-archimedean with finite
residue field κṽ. The only tricky property to check here is that κṽ is finite, but
this follows from the fact that a finite-dimensional normed vector space over a
local field is locally compact.

Let πv be a uniformizer for | − |v, and let πṽ be a uniformizer for | − |ṽ. Then
there exists a unit u ∈ ` and an integer e such that πv = u · πeṽ, implying that
|πv|ṽ = 1/#(κṽ)

e; note that e > 0 because | − |ṽ is equivalent to an extension of
| − |v. But we also know that |πv|ṽ = |Nm`/k(πv)|mv = |πnv |mv = 1/#(κv)

mn, so
to prove the corollary it suffices to show that [κṽ : κv] = n/e. The proof of this
is somewhat involved and extraneous to the development of the present article;
we refer the reader to [1] or [4]. ♠

We can use Lemma 46 to prove the following product formula for number
fields, which will come handy in the next subsection:

Theorem 47 (Product Formula). Let k be a number field, and take x ∈ k×.
Let Λk denote the set of all nontrivial normalized absolute values on k. Then∏

λ∈Λk
|x|λ = 1.

Proof. The product formula clearly holds when k = Q. Indeed, by Example 45,
the normalized non-archimedean absolute values are just the p-adic norms, so
the product over non-archimedean absolute values gives a factor of 1/x, and the
single archimedean absolute value gives a factor of x. Now suppose k is a finite
extension of Q. We write λ | µ for absolute values | − |λ on k and µ on Q if
the restriction of λ to Q is given by µ. Furthermore, let kλ be the completion
of k with respect to | − |λ and Qµ be the completion of Q with respect to | − |µ.
With this notation, we have the following:∏
λ∈Λk

|x|λ =
∏
µ∈ΛQ

∏
λ∈Λk
λ|µ

|x|λ =
∏
µ∈ΛQ

∏
λ∈Λk
λ|µ

|Nmkλ/Qµ(x)|µ =
∏
µ∈ΛQ

|Nmk/Q(x)|µ = 1,

where the second equality is Lemma 46 and the third equality is Corollary 34.
Thus, we have the theorem. ♠
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Finally, the following theorem will also be very useful in the next subsection:

Theorem 48. Let k ↪→ ` be a finite extension of number fields having degree
[` : k] = n. For a normalized absolute value |−|v on k, let the extensions of |−|v
to ` be denoted by | − |v1 , . . . , | − |vN (by Theorem 33, N ≤ n). Furthermore,
let k denote the completion of k with respect to | − |v, and let `vi denote the
completion of ` with respect to | − |vi for each i ∈ {1, . . . , N}. If (ω1, . . . , ωn)
is a basis of ` as a k-vector space, then for almost all choices of the normalized
absolute value | − |v, we have

(5)
n⊕
i=1

ωiOv '
N⊕
i=1

Ovi ,

where Ov is the valuation ring associated to the completion k and where the
identification given by the isomorphism from Theorem 33.

Remark. The following proof requires an understanding of discriminants; see [5]
for the related definitions and properties.

Proof. By Corollary 41, for almost all | − |v we have |ωi|vj ≤ 1 for all i ∈
{1, . . . , n} and j ∈ {1, . . . , N}. Thus, for almost all | − |v, the left-hand-side
of (5) includes via the isomorphism of Theorem 33 into the right-hand-side.
For the reverse inclusion, it suffices to work with the elements of the right-
hand-side coming from ` (via the diagonal embedding), because they are dense

by Theorem 26. Given a =
∑n

i=1 ciωi ∈ ` ∩
⊕N

i=1 Ovi with ci ∈ k for all
i ∈ {1, . . . , n}, the discriminant disc(ω1, . . . , ωm−1, a, ωm+1, . . . , ωn) is an element
of Ov for almost all | − |v, because ωi is integral over Ov for almost all | − |v.
Moreover, we have that

disc(ω1, . . . , ωm−1, a, ωm+1, . . . , ωn) = c2
m · disc(ω1, . . . , ωn).

Notice that for almost all | − |v we have disc(ω1, . . . , ωn) ∈ O×v ; combining this
result with the above equality yields that cm ∈ Ov for all m ∈ {1, . . . , n}. It
follows that the right-hand-side of (5) is included in the left-hand-side via the
isomorphism of Theorem 33. ♠

5.2. Adeles and Ideles. We may now define the adele ring associated to a
number field. Let k be a number field, and let Λk be the set of nontrivial
normalized absolute values on k. Further, let kλ denote the completion of k
with respect to the absolute value | − |λ for each λ ∈ Λk. Notice that we
have the open subset Oλ ⊂ kλ whenever | − |λ is non-archimedean and that
by Corollary 38 there are only finitely many archimedean absolute values in Λ.
This leads us to the following definition:

Definition 49. The adele ring Ak associated to k is the restricted topological
product of the kλ’s with respect to the Oλ’s. The elements of Ak are known
simply as adeles.



AN INTRODUCTION TO THE THEORY OF VALUED FIELDS 33

To illustrate what an adele ring might look like, we provide the following
example, to which will we later return:

Example 50. The adele ring AQ of the field Q of rational numbers is the
restricted topological product of R and the the fields Qp of p-adic numbers with
respect to all of the Z(p)’s. It is the set of sequences (x∞, x2, x3, x5, . . . , xp, . . . )
such that x∞ ∈ R, xp ∈ Qp for all p, and xp ∈ Z(p) for almost all p. ♣

By Lemma 46, Ak is a locally compact topological ring with component-
wise operations of addition and multiplication. Observe that Ak also has the
structure of k-vector space; indeed, if we multiply each component of an adele
{xλ}λ∈Λk by a constant c ∈ k, we know by Corollary 41 that |c|λ = 1 for all but
finitely many λ ∈ Λk, so all but finitely many of the cxλ’s will be elements of
the Oλ’s.

With our understanding (Theorems 33 and 48) of how normalized absolute
values play with finite extensions, we should be able to determine the adele ring
of a finite field extension from the adele ring of the base field. The next lemma
tells us that to do so, we simply need to extend scalars from k to `:

Lemma 51. Let k ↪→ ` be a finite extension of number fields. Then we have
A` ' Ak ⊗k `.

Proof. We retain the notation employed in Theorem 48. Let [` : k] = n, and
take a basis (ω1, . . . , ωn) of ` as a k-vector space. By Theorems 33 and 48, we
have the following commutative diagram for almost all λ:⊕n

i=1 ωikλ kλ ⊗k `
⊕N

i=1 `λi

⊕n
i=1 ωiOλ

⊕N
i=1 Oλi

∼ ∼

∼

Taking the restricted topological product along the left-hand-side yields Ak⊗k `,
and taking the restricted topological product along the right-hand-side yields
A`. The desired isomorphism follows. ♠

Remark. It follows from Lemma 51 that the additive group A+
` is simply the

direct sum of N copies of the additive group A+
k .

Notice that the base field k embeds diagonally as constant sequences into the
adele ring Ak via the map x 7→ {x}λ∈Λ (we shall denote this adele simply by
x for ease of notation), which is well-defined by Corollary 41; such adeles are
called principal and form a subring, and k-vector subspace, of Ak. This diagonal
embedding is compatible with the isomorphism given in Lemma 51, in the sense
that we have the following commutative square:
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k ⊗k ` Ak ⊗k `

` A`

∼ ∼

The next theorem tells us, among other things, about the topology of k, viewed
as a subspace of the adele ring Ak:

Theorem 52. The subspace topology on k induced by the topology on Ak is
discrete. Moreover, A+

k /k
+ is compact.

Proof. We claim that it suffices to consider the case where k = Q. Indeed, by
looking at the commutative square above, we see that ` and A` are direct sums
of copies of k and Ak, respectively, so proving that k is discrete in Ak and that
A+
k /k

+ is compact automatically gives us the analogous results for ` and A`.
To show that Q is discrete in AQ, it suffices to find an open set U ⊂ AQ such

that U ∩Q = {0}. We shall take U to be defined by

U = {{xλ}λ∈ΛQ ∈ AQ : |x∞|∞ < 1 and |xp|p ≤ 1 for all p}.

It is clear that 0 ∈ U . Moreover, if x ∈ U ∩Q, then the condition that |x|p ≤ 1
for all p implies that x ∈ Z, and the condition that |x|∞ < 1 further implies
that x = 0. Thus, U ∩Q = {0}, as desired.

To show that A+
Q/Q+ is compact, it suffices to construct a compact set V ⊂

AQ such that the composite map V ↪→ A+
Q � A+

Q/Q+ is surjective. We shall
take V to be defined by

V = {{xλ}λ∈ΛQ ∈ AQ : |x∞|∞ ≤ 1/2 and |xp|p ≤ 1 for all p}.

That V is compact is clear, since it is the product of compact sets. It remains
to show that V maps surjectively onto A+

Q/Q+, for which we will show that
every adele {xλ}λ∈ΛQ ∈ AQ can be expressed as {xλ}λ∈ΛQ = y+{zλ}λ∈ΛQ , where
y ∈ Q and {zλ}λ∈ΛQ ∈ V . Note that |xp|p ≤ 1 for almost all p by the definition
of an adele. For the finitely many other primes p, let the fractional part of xp be
denoted by bp = ap/p

np , where yp ∈ Z and np ∈ Z>0. Because |bp|q ≤ 1 for all
primes q 6= p, we have that y′ =

∑
bp ∈ Q satisfies |xp − y′|p ≤ 1 for all primes

p. We may then adjust y′ by an integer to obtain y ∈ Q so that |x∞−y|∞ ≤ 1/2
and |xp − y|p ≤ 1 for all primes p. It follows that {xλ}λ∈ΛQ = y + {zλ}λ∈ΛQ ,
where y ∈ Q and {zλ}λ∈ΛQ = {xλ}λ∈ΛQ − y ∈ V , which is the desired result. ♠

We have said a fair bit about the additive structure of the adele ring, so we
will now turn our attention to studying its multiplicative structure. To begin
with, the group of units in the adele ring are given a special name:
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Definition 53. The idele group A×k associated to k is the group of units in Ak;
i.e. we have

A×k = {{xλ}λ∈Λk ∈ Ak : xλ ∈ k×λ and xλ ∈ O×λ for almost all λ ∈ Λk}.
The elements of A×k are known simply as ideles.

At first glance, one might suppose it appropriate to endow the idele group
A×k with the subspace topology induced by Ak, but this choice of topology is
problematic: indeed, the inversion map x 7→ 1/x fails to be continuous in this
topology. In order to correct for this issue, we shall regard A×k as a subset of
Ak × Ak via the embedding x 7→ (x, 1/x), and we shall give A×k the subspace
topology induced by the product topology on Ak × Ak. One readily checks
that the multiplication and inversion operations, as well as the inclusion map
A×k ↪→ Ak, are continuous with respect to this topology.

Since the adele ring was defined as a restricted topological product and
was topologized accordingly, it is natural to ask whether something similar
can be said about the idele group. The next lemma answers this question
in the affirmative:

Lemma 54. As a topological group, the idele group A×k is the restricted topo-
logical product of the k×λ ’s with respect to the O×λ ’s.

Proof. We will first specify the desired map f : A×k → R, where R is the
restricted topological product of the k×λ with respect to the O×λ . The map f will
evidently be a bijective map of sets, and R will thus inherit a group structure
from A×k so that f, f−1 are both homomorphisms of groups. Finally, we will
show that f is both open and continuous.

Take {xλ}λ∈Λk ∈ A×k , and let f be the map that sends this idele to the
element {xλ}λ∈Λk of R. Clearly, f is a well-defined map of sets f : A×k → R,
and it is obviously a bijection, for the inverse map takes {xλ}λ∈Λk ∈ R back to
{xλ}λ∈Λk ∈ A×k . For {αλ}λ∈Λk , {βλ}λ∈Λk ∈ R, we take {αλ}λ∈Λk · {βλ}λ∈Λk =
{αλβλ}λ∈Λk ∈ R, and this defines a group law on R whose identity element is
{1}λ∈Λk . It is then evident that the maps f, f−1 are compatible with the group
structures on A×k and R.

Recall that we have an embedding A×k ↪→ Ak×Ak given by the map {xλ}λ∈Λk 7→(
{xλ}λ∈Λk , {1/xλ}λ∈Λk

)
. The topology on A×k is the corresponding subset topol-

ogy on the product topology on Ak×Ak. Thus, the open subsets W ⊂ A×k satis-
fying W = {{xλ}λ∈Λk ∈ U ∩A×k : {1/xλ}λ∈Λk ∈ V }, for open subsets U, V ⊂ Ak

in the basis of the topology on Ak, form a basis of the topology on A×k .
To show that f is open, it suffices to show that f(W ) is open for all such W .

So pick such a W , and let its corresponding sets U, V ⊂ Ak be given by

U =
∏
λ 6∈S

Oλ ×
∏
λ∈S

Uλ and V =
∏
λ 6∈S

Oλ ×
∏
λ∈S

Vλ,
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where S ⊂ Λk is a finite set, and Uλ, Vλ ⊂ kλ are open subsets for all λ ∈ S.
Now, taking gλ : k×λ → k×λ to be the continuous function defined by gλ(x) = 1/x,
notice that we have the equality

W =
∏
λ 6∈S

O×λ ×
∏
λ∈S

Uλ ∩ g−1
λ (Vλ) ∩ k×.

It is now evident that f(W ) is open, because g−1
λ (Vλ) is open for all λ ∈ S.

To show that f is continuous, it suffices to show that f−1(U) is open for all
open sets U in a basis of the topology on R. By the definition of the restricted
product, we can take

U =
∏
λ 6∈S

O×λ ×
∏
λ∈S

Uλ,

where S ⊂ Λk is a finite set, and Uλ ⊂ k×λ is an open subset for all λ ∈ S.
Indeed, we have that f−1(U) = A×k ∩ (V × W ), where V,W ⊂ Ak are open
subsets defined as follows:

V =
∏
λ 6∈S

Oλ ×
∏
λ∈S

Uλ ∪ {0} and W =
∏
λ 6∈S

Oλ ×
∏
λ∈S

kλ.

We have thus shown that f−1(U) is open in the idele topology, so f is continuous,
which is the desired result. ♠

From the embedding k ↪→ Ak it is easy to see that we obtain an embedding
k× ↪→ A×k . Furthermore, k× is in fact discrete in A×k , because the composite
map k× ↪→ A×k ↪→ Ak × Ak embeds k× as a discrete subset of A×k × A×k by
Theorem 52.

Recall from Theorem 47 that we obtain the value 1 when we take the product
over all normalized absolute values of the absolute value of a particular element.
One can perform a similar operation on an idele, as we will now demonstrate:

Definition 55. The content map c : A×k → R>0 sends {xλ}λ∈Λk ∈ A×k to∏
λ∈Λk
|xλ|λ.

Note that the content map is well-defined because for almost all λ ∈ Λk we
have |xλ|λ = 1 by the definition of an idele; it is also clearly a homomorphism
of multiplicative groups, and the presence of archimedean absolute values en-
sures that it is surjective. We now show that the content map is well-behaved
topologically:

Lemma 56. The content map c : A×k → R>0 is continuous.

Proof. To show that c is continuous, it suffices to show that the preimage of any
open interval (a, b) ⊂ R>0 is open. So pick (a, b) ⊂ R>0, and let {xλ}λ∈Λk ∈ A×k
such that c({xλ}λ∈Λk) ∈ (a, b). Let S ⊂ Λk be the finite set for which xλ 6∈ O×λ .
Choose small intervals Iλ ⊂ R for each λ ∈ S such that |xλ|λ ∈ Iλ and {

∏
λ xλ :

xλ ∈ Iλ} ⊂ (a, b), and for each such λ ∈ S, let Uλ ⊂ k×λ be the open subset of



AN INTRODUCTION TO THE THEORY OF VALUED FIELDS 37

kλ whose image under the absolute value | − |λ is Iλ (notice that the Uλ’s are
open because absolute values are continuous). Then the open set

U =
∏
λ 6∈S

O×λ ×
∏
λ∈S

Uv

is an open neighborhood of {xλ}λ∈Λk whose image under c lies within (a, b). It
follows that c−1((a, b)) is open in A×k , so c is continuous. ♠

The ideles with content equal to 1 form the kernel of the content map and
are of particular importance to the theory. We shall denote by A1

k ⊂ A×k the
subgroup of content-1 ideles; Theorem 47 tells us that k× ⊂ A1

k. The space
A1
k sits as a subspace of both the adele ring Ak and the idele group A×k , so it

is natural to try and compare the topologies inherited by A1
k from Ak and A×k .

The next lemma tells us that they are one and the same:

Lemma 57. The subspace topology on A1
k induced by the topology on Ak is the

same as that induced by the topology on A×k .

Proof. Take a content-1 idele {xλ}λ∈Λk ∈ A1
k, choose a finite set S ⊂ Λk con-

taining all of the archimedean absolute values and those absolute values | − |v
for which |xv|v 6= 1, and let ε > 0. Let U ⊂ Ak be the open set defined by

U = {{yλ}λ∈Λk ∈ Ak : |yλ − xλ|λ < ε for λ ∈ S and |yλ|λ ≤ 1 for λ ∈ Λk \ S},

and let U ′ ⊂ A×k be the open set defined by

U ′ = {{yλ}λ∈Λk ∈ A×k : |yλ − xλ|λ < ε for λ ∈ S and |yλ|λ = 1 for λ ∈ Λk \ S}.

Then U ∩ A1
k = U ′ ∩ A1

k for sufficiently small ε, and this yields the lemma. ♠

Just as we showed that A+
k /k

+ is compact in Theorem 52, we can ask whether
something similar holds for A1

k/k
×. The following theorem gives an answer to

this question:

Theorem 58. We have that A1
k/k

× is compact.

Proof. We can use the same general strategy used to prove Theorem 52. We
want to find a compact set W ⊂ Ak such that W ∩ A1

k maps surjectively onto
A1
k/k

× (note that we are using Lemma 57 here). Using the theory of Haar
measures, one can show that there exists a constant C ∈ R>0 such that for any
adele {xλ}λ∈Λk with

∏
λ∈Λk
|xλ|λ > C, there exists a principal adele a ∈ k× with

|a|λ ≤ |xλ|λ for all λ ∈ Λk. We take W to be the set of adeles {zλ}λ∈Λk ∈ Ak

with |xλ|λ ≤ |xλ|λ for all λ ∈ Λk. For any content-1 idele {yλ}λ∈Λk ∈ A1
k, there

exists a ∈ k× with |a|λ ≤ |y−1
λ xλ|λ for all λ ∈ Λk. Then |ayλ|λ ≤ |xλ|λ for all

λ ∈ Λk, so {a}λ∈Λk · {yλ}λ∈Λk ∈ W , implying that the map W ∩A1
k → A1

k/k
× is

surjective, as desired. ♠
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To conclude this subsection, we will apply the above-developed theory to
prove the finiteness of the ideal class group. We start with the definition of the
ideal group:

Definition 59. Let k be a number field. The ideal group Ik associated to k is
the free abelian group on the set of normalized non-archimedean absolute values
on k, and it bears the discrete topology.

We should justify why it makes sense to call Ik the ideal group, for it is not
immediately clear what it has to do with ideals. But notice that we have a
bijective correspondence between the ideal group Ik introduced in Definition 59
and the group of nonzero fractional ideals of Ok which pairs an absolute value
| − |λ with the ideal pλ ∩ Ok. We also want to relate Ik to the theory of adeles
and ideles; to do so, notice further that we have a continuous map π : A×k →
Ik sending an idele {xλ}λ∈Λk ∈ A×k to

∑
λ∈Λk

ordλ(xλ) · λ, where ordλ(xλ) =

− log2 |xλ|vpλ (see the proof of Theorem 40 for the notation). The image of k×

under π clearly corresponds to the principal fractional ideals of Ok, so we make
the following definition:

Definition 60. Let k be a number field. The principal ideal group Pk associated
to k is the subgroup of Ik given by π(k×). The ideal class group is Ik/Pk.

We can now prove that the ideal class group is finite:

Theorem 61. Let k be a number field. The ideal class group Ik/Pk is finite.

Proof. The map π restricted to A1
k surjects onto Ik because of the archimedean

place. Thus, the induced map A1
k/k

× → Ik/Pk is surjective, so by Theorem 58,
we have that Ik/Pk is compact. But Ik/Pk has the discrete topology and must
be finite as it is both compact and discrete. ♠

5.3. Dirichlet’s Unit Theorem. In this final subsection, we shall introduce
the setting for and provide a proof of Dirichlet’s Unit Theorem, which was first
proven by the German mathematician Peter Dirichlet and later generalized by
German mathematician Helmut Hasse. The theorem concerns the structure of
the group of units in the ring of integers of a number field, and is stated in
general form as follows:

Theorem 62 (Dirichlet’s Unit Theorem, generalized). Let k be a number field,
and let S be a finite set of normalized absolute values on k containing all
archimedean absolute values. Then the S-unit group O×S defined by

OS = {x ∈ k : |x|λ ≤ 1 for all λ ∈ Λk \ S}
has the following structure:

O×S ' Z#(S)−1 ⊕ U,
where U is the group of roots of unity in k×.
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Before we prove Theorem 62, we must make a few observations. For any
positive real numbers a ≤ b, let X(a, b) ⊂ OS be the set defined by X(a, b) =
{x ∈ OS : |x|v ∈ [a, b] for all v ∈ S}. We claim that X(a, b) is finite for all
choices of a ≤ b. Indeed, let W (a, b) ⊂ A×k be the (compact) set of all ideles
(xv)v such that |xv|v ∈ [a, b] for all v ∈ S and |xv|v = 1 otherwise. The ideles
(xv)v in A×k for which xv = xw for all v, w are precisely the ideles that lie in the
image k× under the diagonal embedding, so we have that X(a, b) = W (a, b)∩k×.
Since W (a, b) is compact and k× ↪→ A×k is discrete, we have that X(a, b) is finite.

Now let x be a root of unity in k. We know by the definition of a absolute value
that |x|v = 1 for all absolute values v. If we let U ⊂ k× be the multiplicative,
abelian subgroup of k× defined by U = {x ∈ k× : |x|v = 1 for all v}, then by
taking a = b = 1, we see by the previous paragraph that U ⊂ X(1, 1) for any
choice of a set S of absolute values containing all archimedean absolute values,
so in fact U is finite. Thus, every element of U has finite order and is hence a
root of unity. We have thus shown that U is the group of roots of unity in k×.

We are now in position to provide a proof of Dirichlet’s Unit Theorem:

Proof of Theorem 62. Let s = #(S) − 1, and let J ⊂ A×k be defined by J =
{(αv)v : |αv|v = 1 for all v 6∈ S}. Let J1 = J ∩ A1

k, those elements of J with
content 1. Then since J is open in A×k , we have that J1 is open in A1

k (which
has the subspace topology). We then have that J1/O

×
S = J1/(J1∩k×) is open in

A1
k/k

×, and in fact J1/O
×
S is also closed because it is a subgroup of A1

k/k
×, and

all subgroups of topological groups are closed. We therefore have that J1/O
×
S is

compact. We now consider the map φ : J → Rs defined by

φ((αv)v) =
(

log |αv1|v1 , . . . , log |αvs|vs
)
,

where S = {v1, . . . , vs}. Observe that the map φ is both continuous and sur-
jective, and notice that kerφ ∩ O×S = U . We now claim that im(φ|O×S ) is a

discrete subgroup of Rs. To see why this is the case, we simply observe that the
set X(1/2, 2) is finite (by the argument in the first paragraph of this solution).
Moreover, notice that im(φ|J1) = {(r1, . . . , rs) :

∑s
i=1 ri = 0} and is thus an

(s − 1)-dimensional vector subspace of Rs. Since we have that J1/O
×
S is com-

pact, we deduce that φ(J1)/φ(O×S ) is compact. We therefore have that im(φ|O×S )

is free on s− 1 generators and being discrete, it is thus isomorphic to Zs−1. We
conclude that O×S ' Zs−1 ⊕ U , which is the desired result. ♠

As a final example, we will compute the idele class group, which is a sort of
generalization of the ideal class group, of the field Q of rational numbers.

Example 63. Recall that we studied the quotient group A+
k /k

+ in Theorem 52,
and we also studied the quotient group A1

k/k
× in Theorem 58. One might ask

what we can say about the analogous quotient group A×k /k×, which is known
as the idele class group of the field k. Idele class groups are very important
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constructions in class field theory, but for now, we shall content ourselves with
determining the idele class group of Q. Specifically, we shall prove that

A×Q/Q
× ' (0,∞)×

∏
p

Z×p .

For each x ∈ Q×p , we can take its p-adic norm |x|p ∈ 〈p〉, and then the number
x · |x|p has p-adic norm 1, so x · |x|p ∈ Z×p . In this way, we obtain a canonical
isomorphism for each rational prime p:

Q×p ' 〈p〉 × Z×p ,

where 〈p〉 is the free abelian group of rank 1 generated by p, and the map is
given by x 7→ (|x|p, x · |x|p). Now, the idele group of Q is given by

A×Q ' R× ×
∏
p

′
Q×p ,

where the primed products above are restricted with respect to the rings Z×p .
First notice that we may identify R× with {±1} × (0,∞). Next, observe that
we may identify 〈p〉 with Z. We then have that

A×Q ' {±1} × (0,∞)×
∏
p

′
Q×p ' {±1} × (0,∞)×

∏
p

Z×p ×
⊕
p

Z,

by expanding out the definition of restricted product. We now claim that there
is a canonical isomorphism Q× ' {±1}×

⊕
p Z. Indeed, given a rational number

x ∈ Q×, we can uniquely express x as

x = ±
∏
p

pep

for a unique choice of sign ± and unique exponents ep ∈ Z such that ep = 0 for
all but finitely many p. The desired isomorphism Q× ' {±1} ×

⊕
p Z is then

given by sending x to its sign along with the list of ep’s. Combining our results,
we have that

A×Q ' {±1} × (0,∞)×
∏
p

Z×p ×
⊕
p

Z ' Q×(0,∞)×
∏
p

Z×p .

Taking the quotient by Q×, we find that

A×Q/Q
× ' (0,∞)×

∏
p

Z×p ,

which is the desired identification. ♣
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6. Appendix: Auxiliary Theorems

In this appendix, we present statements and proofs of a few important auxil-
iary theorems from commutative algebra that are employed in this article. The
next two results (primary decomposition and Nakayama’s Lemma) are key im-
plements used in proving Krull’s Intersection Theorem, which was in turn used
in the proof of Proposition 21. However, they are also quite interesting and
useful in their own right.

Theorem 64 (Primary Decomposition). Let A be a ring, and let M be a
Noetherian A-module. Then every A-submodule N ⊂ M has a decomposi-
tion N =

⋂
kQk, where the Qk are primary A-submodules of M , meaning that

Qk 6= M and for any a ∈ A and m ∈ M such that am ∈ Qk, either m ∈ Qk or
a ∈

√
AnnA(M/Q).

Proof. We will first show that if Q ⊂M is primary, then p =
√

AnnA(M/Q) ⊂
A is a prime ideal, in which case we will say that Q is p-primary. If Q ⊂ M is
primary, then suppose ab ∈

√
AnnA(M/Q). Then anbnm ∈ Q for all m ∈ M .

If a 6∈
√

AnnA(M/Q), then we have that an−1bnm ∈ Q for all m ∈ M since
Q is primary. Repeating this argument n times, we find that bnm ∈ Q for all
m ∈M . If b 6∈

√
AnnA(M/Q), then by the same reasoning, we have that m ∈ Q

for all m ∈ M , which is a contradiction because Q 6= M . Thus, at least one of
a or b must be in

√
AnnA(M/Q), so

√
AnnA(M/Q) is a prime ideal.

We will next show that if Q ⊂M is irreducible, then Q is primary. Let Q be
an irreducible submodule of M . Observe that we may replace the pair (M,Q)
with (M/Q, 0), because Q is an irreducible submodule of M if and only if 0
is an irreducible submodule of M/Q, and Q is a primary submodule of M if
and only if 0 is a primary submodule of M/Q. Thus, we can assume Q = 0.
We must show that if am = 0 for some a ∈ A and m ∈ M , then m = 0 or
a ∈

√
AnnA(M). Let x ∈ A be arbitrary, and consider the ascending chain

of submodules Mx ⊂ Mx2 ⊂ Mx3 ⊂ . . . , where Mxi ⊂ M is the submodule
defined by Mxi = {m ∈ M : xim = 0} for each positive integer i. Since M
is Noetherian, this chain must terminate, so we have that Mxi+1 = Mxi for all
i ≥ N for some positive integer N . We claim that Mx ∩ xNM = 0. Indeed, if
xNm ∈ Mx, then xN+1m = 0, so m ∈ MxN+1 = MxN , so xNm = 0. Since 0 is
irreducible, we have that Mx = 0, in which case xm = 0⇒ m = 0, or xNM = 0,
in which case xm = 0⇒ x ∈

√
Ann(M), as desired.

We will now show that any submodule N ⊂ M can be written as a finite
intersection of irreducible submodules. Consider the set S of submodules of
M that cannot be expressed as a finite intersection of irreducible submodules.
Since M is Noetherian, if S is nonempty, we may choose a maximal element
N of S. Clearly N is not irreducible, so we have that N = N1 ∩ N2 for some
submodules N1, N2 ) N . But neither N1 nor N2 is an element of S, so we
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can express each of N1, N2 as a finite intersection of irreducible submodules,
which implies that N = N1∩N2 can also be expressed as a finite intersection of
irreducible submodules, a contradiction implying that S = ∅. We conclude that
every submodule of M can be expressed as a finite intersection of irreducible
submodules. The theorem then follows by combining the above results. ♠

Proposition 65 (Nakayama’s Lemma). Let R be a commutative ring, let M
be a finitely-generated A-module, and let I ⊂ A be an ideal such that IM = M .
Then, there exists a ≡ 1 (mod I) such that aM = 0.

Proof. Clearly if M is generated by 0 elements, then M = 0, and the desired
value of a is simply a = 1. We now induct upon the number n of generators
of M . Suppose M is generated by m1, . . . ,mn. Since IM = M , there exist
a1, . . . , an ∈ I such that

m1 = a1m1 + · · ·+ anmn ⇒ (1− a1)m1 = a2m2 + · · ·+ anmn.

It follows that the A-module (1−a1)M is generated by n−1 elements. Moreover,
we have that I((1 − a1)M) = (1 − a1)M since IM = M . By induction, there
exists b ≡ 1 (mod I) such that b(1 − a1)M = 0. Simply taking a = b(1 − a1)
yields the desired result. ♠

Corollary 66 (Nakayama’s Lemma for local rings). If A is a local ring with
unique maximal ideal m, then for any finitely-generated A-module M , we have
M = 0 if mM = M .

Theorem 67 (Krull’s Intersection Theorem). If A is a local Noetherian ring
with maximal ideal m, then m∞ :=

⋂∞
n=1 m

n = 0.

Proof. Let mm∞ =
⋂N
k=1 qk be a primary ideal decomposition, which exists

because A is Noetherian. We claim that qk ⊃ m∞ for all k ∈ {1, . . . , N}.
Take k ∈ {1, . . . , N}, and consider the ideal

√
qk (which is prime because qk

is primary). First, suppose
√
qk = m. Since A is Noetherian, we have that

qk ⊃ mn for some positive integer n. Thus, we have that qk ⊃ mn ⊃ m∞.
Now suppose

√
qk 6= m. Since m is the unique maximal ideal of A, we have

that
√
qk ( m. Take xk ∈ m \ √qk, and let y ∈ m∞ be any element. Then

yxk ∈ mm∞ ⊂ qk, so since qk is primary, we have that y ∈ qk or xk ∈
√
qk. But

since xk 6∈
√
qk, we must have that y ∈ qk. Since y ∈ m∞ was arbitrary, we

have that m∞ ⊂ qk. Thus, the claim holds in all cases.
Since qk ⊃ m∞ for all k ∈ {1, . . . , N}, we have that mm∞ =

⋂N
k=1 qk ⊃ m∞.

But m∞ ⊃ mm∞, so it follows that m∞ = mm∞. Because A is Noetherian, we
have that m∞ is finitely generated, so since A is local, we have by Nakayama’s
Lemma that m∞ = 0, as desired. ♠

We conclude this appendix with a proof of the Primitive Element Theorem,
which was used in the proof of Theorem 33.
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Theorem 68 (Primitive Element Theorem). Let k be a field, and let ` be a field
extension of k, generated over k by a1, a2, . . . , an, where ai is algebraic over k
for all i ∈ {1, . . . , n} and ai is separable over k for all i ∈ {2, . . . , n}. Then
there exists a primitive element b ∈ ` such that ` is generated over k by b.

Proof. By induction, it suffices to consider the case where n = 2. We shall
consider the elements bt = a1 + ta2 ∈ ` for t ∈ k and show that almost all of
these elements are primitive. Our method of proof will be completely explicit,
so given an extension satisfying the criteria of the theorem, one can follow the
argument in order to compute a primitive element.

Let f, g ∈ k[x] denote the minimal polynomials of a1, a2 respectively. Since
0 = f(a1) = f(bt−ta2) for any t ∈ k, we have that a2 is a root of the polynomial
ht ∈ k(bt)[x] defined by h(x) = f(bt − tx). Thus, g and ht are divisible by the
minimal polynomial of a2 over k(bt) for all t ∈ k. Suppose g, ht have a common
factor of degree at least 2. We know that g, ht already have a common root in
a2, and working in an algebraic closure `′ of `, we see by the separability of a2

that there must exist another common root of g, ht, call it ct ∈ `′ \ {a2}. Then
f(bt−tct) = f(a1+t(a2−ct)) = 0, and there are clearly only finitely many values
of t for which this can happen. For all other values of t, the polynomials g, ht
do not have a common factor of degree at least 2, so the minimal polynomial
of a2 over k(bt) must be linear, implying that a2 ∈ k(bt), from which it follows
that a1 ∈ k(bt) as well. We may then take b = bt. ♠
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