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Abstract

Social choice theory is a field that concerns methods of aggregating individual interests to

determine net social preferences. Arrow’s Impossibility Theorem states that no social choice

system can satisfy all requirements in a collection of “reasonable” criteria. We make the notion

of “reasonable” voting systems precise by stating the four properties that voting systems must

have in order to be “reasonable.” We then present two different proofs of Arrow’s Theorem,

both of which combine three of the “reasonable” properties to obtain a contradiction of the

fourth. Finally, we discuss the theorem’s implications for social choice theory and show how the

theorem can be applied to real-world examples of voting systems.

1. Social Choice Theory

Kenneth Arrow’s Impossibility Theorem, which he first introduced in his seminal 1951 book Social

Choice and Individual Values, is considered to be the mathematical foundation of modern social

choice theory, a field that concerns methods of aggregating individual interests to determine net

social preferences [1]. The theorem essentially states that no social choice system can determine

net social preferences without violating at least one condition in a specific set of “reasonable”

criteria. These criteria have their roots in the democratic basis of social choice theory, the belief

that social decisions should, in some “reasonable” way, depend on the preferences of individuals

in the society [4] and on nothing else. As we discuss in Section 2, we can make the notion of

“reasonable” criteria precise by considering a list of properties that we would like our social choice

systems to satisfy.

The process of social decision-making has numerous real-world applications. The market system

itself (assuming laissez-faire, of course) is a prime example of the importance of social choice: in

this system, the price and quantity of a certain product is determined solely by the net demand

(the choice to buy) of the product’s buyers and the net supply (the choice to sell) of the product’s

sellers. Moreover, on the buyers’ side itself, individuals makes choices among various products to

maximize their own total utility. Likewise, on the sellers’ side itself, individual firms make choices

among various resources to maximize their own total profits. In particular, a firm is owned by its

shareholders, so if the shareholders disagree about how profit can be maximized, the wishes of each

individual shareholder need to be aggregated in a social choice system to yield the final production

strategy (which cannot be done “reasonably,” according to Arrow’s Theorem) [3]. Also, some

decisions are made in the government, in which case representatives make decisions on nation-wide

issues through some kind of “voting system” (this is what goes on in governmental bodies like the

U.S. Congress all the time). In sum, whether school administrators are seeking to maximize their
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students’ total utility by selecting appropriate numbers of basketballs and footballs to purchase or

citizens are choosing among various candidates for their country’s presidency, people are constantly

forced to make choices.

2. Voting Systems

For ease of discussion, we will consider only voting systems throughout the rest of the paper, but it

is important to recognize that our subsequent arguments for voting systems can be easily applied

to social choice systems in general.

Before we define voting systems precisely, we provide the necessary background definitions and

assumptions. Let the finite set S be the set of all voters in society and the finite set C be the set

of all candidates (candidates are often more generally referred to as alternatives or options). For

any two candidates a, b ∈ C, each s ∈ S has either a >s b, meaning that s prefers a to b, or the

opposite. As is true of economic theory in general, we make the assumption that the voters are

“rational” individuals. Firstly, each rational voter must rank all candidates in a transitive manner,

so that for any s ∈ S, if a >s b and b >s c, then a >s c must hold. Because each voter’s preferences

are transitive, we can conclude that in making preferences, rational voters define total orderings

upon elements of C. Secondly, rational voters must order their candidates without coercion, so

that each voter composes his preferences independently of all other voters. Finally, let OC denote

the set of all total orderings of the elements of C.

Define a voting system to be any map V : (OC)|S| → OC that takes some t1, t2, . . . , t|S| ∈ OC to

some t ∈ OC (here, (OC)|S| = OC×· · ·×OC is the set of all possible combinations, or voter profiles,

of individual voters’ orderings). In other words, a voting system V is a function that is given as

input the preferences (the ti’s) of each voter and that returns as output some ordering, or social

ranking, (t) of the candidates. Whether t is “reasonable” or not is independent of the definition

of a voting system; we now consider properties that any “reasonable” voting system should satisfy

along with abbreviations that we will use to refer to them throughout the rest of the paper:

1. Unanimity (U): If for some a, b ∈ C we have a >s b for every s ∈ S, then t = V (t1, t2, . . . , t|S|)

is an ordering that satisfies a > b. In other words, the output t of the voting system V , when

applied to a society that unanimously prefers a to b, must rank a above b. So, if a society is

in consensus about the ranking of a pair of candidates, then the society must choose to rank

those two candidates in accordance with their common preference.

2. Rationality (R): The ranking t = V (t1, t2, . . . , t|S|) is a total ordering, so that transitivity is

obeyed in the social ordering t of the candidates.

3. Non-dictatorship (ND): If for some i ∈ 1, 2, . . . , |S| and any a, b ∈ C we have that whenever

ti satisfies a > b and tj satisfies b > a for j 6= i, t = V (t1, t2, . . . , t|S|) satisfies a > b, then the

voter whose ranking is ti is said to be a dictator. A “reasonable” voting system should not

have any dictators. Thus, the output t of the voting system should not satisfy the wishes of a
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single voter by overriding the wishes of all the other voters. For property ND to make sense,

we require monotonicity : if a, b ∈ C such that t has a < b, then lowering the relative position

of a (with respect to b) in any of the ti should not alter the relative position of a in t.

4. Independence of Irrelevant Alternatives (IIA): For a, b, c ∈ C, the ranking between a, b in t

should be identical to the corresponding ranking when the position of c in t is changed. That

is, if a is ranked higher than b socially, then the position c has in t should be of no relevance

whatsoever to the fact that a > b in t.

Note that if there are only two candidates, then we get property IIA for free, because we do not

have any third alternatives to be concerned about. In fact, as we discuss in Section 4, Arrow’s

Theorem does not even apply when |C| = 2; in this case, it is actually possible to have a voting

system that satisfies all of the above properties.

3. Arrow’s Theorem and its Proofs

In this section, we state Arrow’s Theorem formally and provide two short proofs, one due to Terence

Tao [5] and the other due to John Geanakoplos [2].

Theorem (Arrow’s Theorem). If |C| ≥ 3, then the properties U, R, ND, and IIA are inconsistent.

We note that both proofs often utilize a, b, c ∈ C, thereby employing the assumption in the

theorem statement that |C| ≥ 3.

3.1. Tao’s Proof

In Tao’s original proof of the theorem, it is assumed that there is impartiality among the candi-

dates; i.e., the output of the voting system does not change when the candidates are permuted.

Nonetheless, as we show in the following proof, a similar approach can be used to obtain the theo-

rem without the assumption of impartiality among the candidates. Furthermore, Tao’s statement

of property ND is different from the one presented in Section 2. Specifically, Tao says that a voter

who can force his preference for some a, b ∈ C is a dictator, while we would only consider that

voter to be a dictator over a, b. The following proof thus possesses further modifications needed to

make it work with our version of property ND. Tao’s proof relies on the notion of a “quorum,” a

set of voters who can force their mutual preference on the social ranking.

For some particular pair a, b ∈ C, define a quorum to be a set Q of voters such that if the ranking

of every q ∈ Q satisfies a >q b and if the ranking of every s ∈ S \ Q satisfies b >s a, then the

output ranking of the voting system satisfies a > b. This means that the members of a quorum for

candidates a, b can always force a > b in the social ranking by unanimously ranking a > b in their

individual rankings. We denote the set of all quorums of a, b by R(a, b) (a pair of candidates might

have multiple possible quorums). Note that by property U, S is a quorum for any two candidates.
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Because of property IIA, whether or not Q ∈ R(a, b) can force a > b depends only on the

individual rankings of a, b for each q ∈ Q. Thus, the notion of a quorum is well-defined; in other

words, a quorum cannot force a > b sometimes but fail to force a > b at other times if all its

members vote a > b. Notice that each pair of candidates has a distinct notion of quorum, for

Q need not be a quorum for some other pair of candidates c, d (i.e., Q ∈ R(a, b) does not imply

Q ∈ R(c, d)) if impartiality exists among the candidates.

We are now ready to prove Arrow’s Theorem. We first prove that if Q1 ∈ R(a, b) and Q2 ∈ R(b, c),

then Q1∩Q2 ∈ R(a, c) for any distinct a, b, c ∈ C; that is, the intersection of a quorum for candidates

a, b and a quorum for candidates b, c is a quorum for candidates a, c. Suppose that the following

are true:

1. All members of Q1 vote a > b;

2. All members of Q2 vote b > c; and

3. All members of S \ (Q1 ∩Q2) vote c > a.

Clearly, the social ranking must have a > b and b > c (because Q1 and Q2 are quorums), and

so, using property R, we obtain a > c. Thus, Q1 ∩ Q2 is a quorum for a, c, and sticking to our

notation, we can write Q1 ∩Q2 ∈ R(a, c).

We next prove that for any s ∈ S, we have S \ {s} is a quorum for any two candidates. Suppose

that this is not the case. Then s is a dictator for at least one pair a, b ∈ C, meaning that s can force

his preference between a, b in the social ranking. We claim that S \ {s} must then be a quorum

for a, c, where c ∈ C satisfies c 6= b. This claim is true because s would otherwise be a dictator

for a, c, implying that s must be a dictator for all pairs involving a, b, c. Then, by repeating this

argument where a is replaced with each of the other elements of C, we see that s must be a dictator

for all pairs of candidates, which violates property ND. Since s ∈ R(a, b) and S \ {s} ∈ R(a, c),

we have {s} ∩ (S \ {s}) = ∅ ∈ R(b, c), a result that clearly violates property U, as the empty set

cannot possibly be a quorum. Therefore, for any s ∈ S, we have S \ {s} is a quorum for any two

candidates.

If s1, s2, . . . , s|S| are all the elements of S and a, b, c are three elements of C (this is where

the |C| ≥ 3 condition comes in), then S \ {s1} ∈ R(a, b), S \ {si} ∈ R(b, c) for all i 6= 1. So,⋂|S|
i=1(S \ {si}) = ∅ is a quorum (it is either in R(a, b) or R(a, c)), so the empty set is a quorum,

which again violates property U. Thus, the properties U, R, ND, and IIA together are inconsistent,

and we have the theorem. �

3.2. Geanakoplos’ Proof

In [2], Geanakoplos gave two other short proofs of Arrow’s Theorem, but in our view, the one

presented below is the simplest of the three.

While Tao’s proof uses the properties R, ND, and IIA to contradict property U, Geanakoplos’

proof uses the properties U, R, and IIA to contradict property ND. For this proof, we first require
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the statement and proof of the Extremal Lemma. The main body of theorem’s proof relies not

only on the Extremal Lemma, but also on the notion of an “extremely pivotal” voter, one who can

move a candidate from the very bottom to the very top of a social ranking. Notice that because

the set of candidates is finite and because all rankings are total orderings, we can say that the least

candidate in a ranking is at the “very bottom” and that the greatest candidate in a ranking is at

the “very top.”

Extremal Lemma. For any b ∈ C, if every voter places b at the very top or bottom of his ranking,

then the social ranking also has b at the very top or bottom.

Proof. Suppose the contrary. Then for some a, c ∈ C, we have a > b and b > c in the social

ranking, and by property R, a > c must hold. Because b occupies an extremal position in each

voter’s ranking, we can change the individual rankings of a, c without affecting the position of b in

the social ranking. So, we can make each individual ranking satisfy c > a. Now by property U,

c > a must hold, which is a contradiction. Thus we have the lemma.

We are now ready to prove Arrow’s Theorem. Let a voter s ∈ S be called “extremely pivotal”

for b ∈ C at some voter profile P if s induces the social ranking of a, b to change by altering his

own ranking of a, b as long as the rest of the rankings are fixed at their positions in P.

We first prove that at some voter profile P and for some b ∈ C, we can find s ∈ S such that s

is extremely pivotal. Let us construct P in such a way that all voters rank b at the very bottom

of their individual rankings. By property U, b is clearly at the bottom of the social ranking in this

case. Now suppose the voters successively move b from the very bottom to the very top of their

rankings, and let s be the first voter who, by moving b from the very bottom to the very top of

his ranking, causes the position of b in the social ranking to increase. By the Extremal Lemma, s

causes b to move to the very top of the social ranking, meaning that for any candidate a 6= b, s can

alter the social ranking of a, b by altering his own ranking of a, b, keeping all other rankings fixed.

So, s is extremely pivotal.

We next prove that s is a dictator for all pairs a, c ∈ C that satisfy a 6= b and c 6= b. Call the

voter profile that results just before s moves b from the very bottom to the very top of his own

ranking P1. Just after s moves b from the very bottom to the very top of his own ranking, suppose

that no more voters execute this operation, and call the resulting voter profile P2. Further suppose

that s then moves a above b in his own ranking, so that a >s b >s c, and let the rankings of a, c

for all voters in S \ {s} be arbitrary, keeping b in its extremal position. Call this new voter profile

P3. By property IIA, we can say that (1) P3 is identical to P1 with respect to candidates a, b; and

(2) P3 is identical to P2 with respect to candidates b, c. Therefore, V (P3) satisfies a > b and b > c,

so by R, V (P3) satisfies a > c whenever a >s c, showing that s is a dictator for a, c.

We conclude by proving that s is a dictator for all pairs of candidates. To do this, we need only

show that s is a dictator for all pairs of candidates involving b, because we have already shown that

s is a dictator for all other pairs. Some d ∈ S is a dictator for all pairs involving b, because we could

have repeated the arguments of the previous two paragraphs using some other candidate a instead
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of b. But because s can change the social ranking of a, b for any a ∈ C in moving from profile P1
to profile P2, we must have that s = d, so s is a dictator for a, b, thereby violating property ND.

Thus we have the theorem. �

4. Consequences of Arrow’s Theorem

Arrow’s Theorem unfortunately tells us that voting systems cannot satisfy all “reasonable” criteria

at once. Therefore, all of the standard voting systems used to make decisions today must at times

violate at least one of the properties U, R, ND, and IIA. We now consider the pitfalls of two common

voting systems, majority rule and plurality rule.

Example 4.1. The Marquis de Condorcet, a French mathematician, was the first to study the

fairness of majority rule in depth [3]. In the majority rule voting system, the winning candidate

must be preferred by a majority to each other candidate. For example, if a, b, c ∈ C, suppose

a > b > c has 44%, b > c > a has 34%, and c > b > a has 22% of the vote. Then b is the

winner of the election since he is ranked higher than a by 56% of the voters and since he is ranked

higher than c by 78% of the voters, although a has the most first place votes at 44%. To show

that majority rule violates one of the properties U, R, ND, and IIA, let us consider Condorcet’s

paradox, described as follows. Suppose for a, b, c ∈ C the social ranking that 1/3 of the voters rank

a > b > c, another 1/3 rank b > c > a, and the last third rank c > a > b. Then a majority prefer

a to b, a majority prefer b to c, and a majority prefer a to c, a result that contradicts property R.

Note that we do not obtain such paradoxes if |C| = 2; i.e., there are two candidates. If there is a

majority, then the winner is obvious, and if not, then a random selection of the winner will suffice.

Example 4.2. Plurality rule is the voting system that is most widely used in the United States [3]

today; it is used for electing members of congress, and the election of presidents is similar to a

collection of plurality rule systems, one for each state. In the plurality rule voting system, the

candidate who is ranked first by most voters is the winner. For example, if a, b, c ∈ C, suppose

a > b > c has 44%, b > c > a has 34%, and c > b > a has 22% of the vote. Then a is the winner

of the election since he has the plurality of 44%. Note that this result is different from the same

situation when majority rule was used, as plurality rule gave a as the winner but majority rule gave

b as the winner. To show that plurality rule violates one of the properties U, R, ND, and IIA, let

us consider the 2000 presidential election in the United States. There were three contestants in the

election, Republican George Bush, Democrat Al Gore, and Green Party candidate Ralph Nader.

In the case of Florida, which uses plurality rule and was the deciding state, Gore lost to Bush by

less than 600 votes [3]. Had Nader not run in the election, it is quite likely that many Green Party

supporters would have ended up voting for Gore on account of his more liberal policies. Thus,

Gore would have probably taken Florida by storm had Nader, who is known in political terms as a

spoiler, not run, a result that violates property IIA because the removal of a supposedly irrelevant

candidate would have changed the outcome of the election.
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Gloomy though the theorem may seem, “Impossibility Theorem” may actually be a misnomer for

Arrow’s result. While the theorem does state that no voting system satisfies the properties U, R,

ND, and IIA, many voting systems actually come quite close to doing so. As we saw in Section 2,

majority rule violates property R if the voter profile happens to result in a Condorcet paradox.

However, if the situations inducing such paradoxes are rare, then we can exclude those situations,

and voting systems like majority rule can actually end up satisfying all four properties [3]. For

example, let a, b, c ∈ C. If unlikely rankings like, say, a > b > c and b > a > c are excluded, then

the only possible rankings left are a > c > b, c > b > a, c > a > b, and b > c > a, no three of

which form Condorcet paradoxes. Therefore, majority rule, when taken with an understanding of

which outcomes are likely and which are not, can actually be “reasonable”; i.e., property R will

not be violated, so a winner can be determined. This may very well be why Arrow originally gave

his result the optimistic title “General Possibility Theorem” [4].
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