
LIE ALGEBRAS AND ADO’S THEOREM

ASHVIN A. SWAMINATHAN

Abstract. In this article, we begin by providing a detailed description of
the basic definitions and properties of Lie algebras and their representations.
Afterward, we prove a few important theorems, such as Engel’s Theorem
and Levi’s Theorem, and introduce a number of tools, like the universal
enveloping algebra, that will be required to prove Ado’s Theorem. We then
deduce Ado’s Theorem from these preliminaries.
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1. Motivations and Definitions

1.1. Historical Background. 1

The vast and beautiful theory of Lie groups and Lie algebras has its roots
in the work of German mathematician Christian Felix Klein (1849–1925), who
sought to describe the geometry of a space, such as a real or complex manifold,
by studying its group of symmetries. But it was his colleague, the Norwe-
gian mathematician Marius Sophus Lie (1842–1899), who had the insight to
study the action of symmetry groups on manifolds infinitesimally as a means
of determining the action locally. Lie thus created and developed the theory of
continuous symmetry that we now call “Lie theory” in his honor, and his work
has had profound consequences in a variety of fields, including particle physics,
where the notion of Lie algebra representation is fundamental to the study of
elementary particles.

A natural question that arises in the study of group representations is whether
or not a given group is linear, in that it admits a faithful finite-dimensional rep-
resentation (here the answer is yes for finite groups, because Cayley’s theorem
tells us that every finite group is isomorphic to a subgroup of a symmetric
group, but counterexamples may be readily found among infinite groups). One
can ask the analogous question in the context of Lie algebras: does every finite-
dimensional (real or complex) Lie algebra admit a faithful finite-dimensional
representation? Lie had long suspected the answer to be in the affirmative, but
he was unable to provide a complete proof; the statement was first proven by
Russian mathematician Igor Dmitrievich Ado (1910–1983), a student of Cheb-
otarev, as part of his doctoral dissertation. As it happens, the faculty at Kazan
State University, where Ado was a student, were so impressed with his work
that instead of granting him a doctorate, they awarded him the degree of ha-
bilitation, which is the highest academic degree offered by many universities
throughout Eurasia. Since the work of Ado, his theorem has been general-
ized by Iwasawa and Harish-Chandra to hold for Lie algebras over fields with
arbitrary characteristic.

In this paper, we will start by providing a detailed description of the basic
definitions and properties of Lie algebras and their representations. Afterward,
we will prove a number of important theorems that will serve as key stepping-
stones in the last section of the paper, where we will detail a complete proof of
Ado’s Theorem.

1.2. Defining Lie Algebras. We begin by defining Lie algebras abstractly, in
the sense that our definition makes no reference to Lie groups. The motivation
for studying Lie algebras independently of Lie groups has its origins in the work

1See [5] for a more comprehensive treatment on the history of Lie Theory, and see [6] for a
more detailed discussion on the history of Ado’s Theorem.
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of German mathematician Wilhem Karl Joseph Killing (1847–1923), who had
no access to the Scandinavian journals that Lie published in and consequently
invented the theory of Lie algebras on his own (for which he received much scorn
from Lie).

Definition 1. An abstract Lie algebra g is a (real or complex) vector space
equipped with an antisymmetric bilinear form [−,−] : g × g → g, known as a
Lie bracket, that satisfies the Jacobi identity

[[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0

for all X, Y, Z ∈ g.

The Jacobi identity may appear to be strange (and unmotivated) at first
glance, but it has a number of important formal consequences and demonstrates
that abstract Lie algebras are not generally associative: indeed, we have that
[[X, Y ], Z]− [X, [Y, Z]] = [Y, [Z,X]].

We say that a Lie algebra is finite-dimensional if its underlying vector space
is finite-dimensional. Given that an abstract Lie algebra has the underlying
structure of vector space, it is natural to wonder whether there are notions
analogous to vector subspaces, direct sums, and homomorphisms. The key to
answering these questions is to determine how these structures should interact
with the Lie bracket. For the case of vector subspaces, the answer depends on
how strongly we want the Lie bracket structure to be preserved:

Definition 2. Let g be an abstract Lie algebra. Then a vector subspace h ⊂ g is
said to be a Lie subalgebra of g if h is itself closed under the Lie bracket operation
(i.e. [X, Y ] ∈ h for all X, Y ∈ h, or simply [h, h] ⊂ h). A Lie subalgebra h of g
is said to be an ideal of g if h is closed under taking Lie brackets with arbitrary
elements of g (i.e. [X, Y ] ∈ h for all X ∈ h and Y ∈ g, or simply [h, g] ⊂ h).

As for direct sums, the definition is exactly what one would expect, with the
Lie bracket operating component-wise:

Definition 3. Let g1, g2 be abstract Lie algebras. Then the vector space
g1 ⊕ g2 naturally has the structure of Lie algebra, with the Lie bracket given by
[(X1, X2), (Y1, Y2)] = ([X1, Y1], [X2, Y2]) for all X1, Y1 ∈ g1 and X2, Y2 ∈ g2.

Note that if g = g1⊕ g2 is a direct sum decomposition of a Lie algebra g into
two Lie subalgebras g1, g2, then [g1, g2] = 0, in the sense that [X, Y ] = 0 for all
X ∈ g1 and Y ∈ g2; it follows that g1, g2 are in fact ideals of g. Finally, Lie
algebras should “talk to each other” in a way that is compatible with the Lie
bracket operation:

Definition 4. Let g1, g2 be abstract Lie algebras. A map of vector spaces
φ : g1 → g2 is a Lie algebra homomorphism if φ([X, Y ]) = [φ(X), φ(Y )] for all
X, Y ∈ g1.
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Before moving on to defining Lie algebra representations, we pause to consider
a number of important examples that should help contextualize the heretofore-
described concepts:

Example 5. The following seven points not only illustrate the concepts intro-
duced in Definitions 1–4, but also present important observations and tools that
will be used in the rest of this article:

(a) Given any (real or complex) vector space V , we can turn V into a Lie
algebra by equipping it with the trivial bracket [X, Y ] = 0 for all X, Y ∈
V ; such a Lie algebra is said to be abelian. In fact, any 1-dimensional
subspace of a Lie algebra is an abelian subalgebra: if X is a nonzero
element of such a subspace, then [aX, bX] = ab[X,X] = 0 for all scalars
a, b. Note that any subspace of an abelian Lie algebra is an ideal.

(b) The center Zg of a Lie algebra g is the ideal of g defined by Zg = {X ∈
g : [X, Y ] = 0 for all Y ∈ g}. That Zg is an ideal is an immediate
consequence of the Jacobi identity: indeed, we have that [[X, Y ], Z] =
[X, [Y, Z]] + [Y, [Z,X]] = 0 + 0 = 0 for all X, Y ∈ Zg and Z ∈ g. If g is
abelian then Zg = g.

(c) The Lie algebra gln(k), where k = R or k = C, is called the general
linear Lie algebra, and it is defined to be the space of n × n matrices
with entries in k, with the Lie bracket given by the commutation of
matrices [X, Y ] = XY − Y X for all X, Y ∈ gln(k) (note that gln(k)
is nonabelian). It contains, as a Lie subalgebra, the special linear Lie
algebra sln(k) whose elements are traceless matrices — note here that
the trace of the commutation of any two matrices in gln(k) is 0, so
[gln(k), gln(k)] ⊂ sln(k); in particular, [sln(k), gln(k)] ⊂ sln(k), so sln(k)
is an ideal of gln(k).

(d) More abstractly, given a k-vector space V , we obtain the Lie algebra
gl(V ) of k-endomorphisms of V , with the Lie bracket given by [S, T ] =
S ◦ T − T ◦ S for all S, T ∈ gl(V ). If V is finite-dimensional, identifying
V with kn by choosing a basis induces a corresponding identification of
gl(V ) with gln(k).

(e) Note that if g is an abstract Lie algebra and h is a Lie subalgebra, the
inclusion map h ↪→ g is a Lie algebra homomorphism. Also, if φ : g1 → g2
is a Lie algebra homomorphism, then the kernel kerφ ⊂ g1 is an ideal
because we have that φ([X, Y ]) = [φ(X), φ(Y )] = [0, φ(Y )] = 0 for all
X ∈ kerφ and Y ∈ g1.

(f) Let g be an abstract Lie algebra, and let a ⊂ g be an ideal. Then
one readily verifies that the quotient vector space g/a has the natural
structure of Lie algebra. Given a Lie algebra homomorphism φ : g1 → g2,
the induced map of vector spaces g1/ kerφ → g2 is also a Lie algebra
homomorphism.
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(g) Let g be a real Lie algebra. Then the vector space gC = g⊗RC = g⊕(i·g)
is a complex Lie algebra under the complex-linear Lie bracket operation
defined by [(X, iY ), (X ′, iY ′)] = [(X,X ′)− (Y, Y ′), (X, Y ′) + (Y,X ′)]. In
this setting, we say that gC is the complexification of g and that g is a
real form for gC. ♣

We shall expand our discussion of the properties of Lie algebras in Section 2.1.

1.3. Defining Representations of Lie Algebras. Representation theory is
the study of how algebraic objects, like groups and Lie algebras, act on vector
spaces. We now turn our attention to defining representations of Lie algebras;
the first major strides in this subject were made by French mathematician Élie
Joseph Cartan (1869–1951), who classified the irreducible finite-dimensional
representations of simple Lie algebras.

Definition 6. Let V be a (real or complex) vector space, and let g be an
abstract Lie algebra. A (real or complex) Lie algebra representation is a Lie
algebra homomorphism µ : g → gl(V ). Equivalently, a (real or complex) Lie
algebra representation is a bilinear map g×V → V , denoted by (X, v) 7→ X · v,
satisfying [X, Y ] · v = X · (Y · v)− Y · (X · v) for all X, Y ∈ g and v ∈ V .2

We say that a Lie algebra representation µ : g→ gl(V ) is finite-dimensional
if V is finite-dimensional and is faithful if µ is injective. When referring to
representations, we shall interchangeably write µ (the map) or V (the vector
space on which g acts). Any reader familiar with the representation theory of
groups will wonder whether the notions of invariant subspace, direct sum, and
representation homomorphism carry over to the representation theory of Lie
algebras, and indeed they do. For invariant subspaces, we have:

Definition 7. Let µ : g→ gl(V ) be a representation of an abstract Lie algebra
g. A vector subspace W ⊂ V is said to be g-invariant if g ·W ⊂ W , in the
sense that X · w ∈ W for all X ∈ g and w ∈ W . In this case, W gives rise to a
subrepresentation g → gl(W ) of V , defined by restricting the action of g on V
to W .

Direct sums of Lie algebra representations are defined in the obvious way,
with the Lie algebra elements acting block-diagonally:

Definition 8. Let µ1 : g → gl(V1) and µ2 : g → gl(V2) be representations of
an abstract Lie algebra g. Then the map µ1 ⊕ µ2 : g → gl(V1 ⊕ V2) defined by
X · (v1, v2) = (X · v1, X · v2) for all X ∈ g, v1 ∈ V1, and v2 ∈ V2 is a Lie algebra
representation.

2The two definitions are related by X · v = µ(X)(v) for all X ∈ g and v ∈ V . We shall use
the notation interchangeably.
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A Lie algebra representation µ : g → gl(V ) is said to be irreducible if its
only g-invariant subspaces are 0 and V . This terminology suggests that we
may be able split a non-irreducible representation as a direct sum of reducible
components. Lie algebra representations satisfying this property are given a
special name:

Definition 9. Let µ : g → gl(V ) be a Lie algebra representation. Then µ is
said to be semisimple if for every g-invariant subspace W ⊂ V there exists a
g-invariant subspace W ′ ⊂ V such that V = W ⊕W ′.

Note that in the setting of Definition 9, we have V = W ⊕W ′ as Lie algebra
representations, in the sense that the equality is compatible with the g-action.
Finally, Lie algebra representations should “talk to each other” in a way that is
compatible with the action of the Lie algebra elements:

Definition 10. Let µ1 : g → gl(V1) and µ2 : g → gl(V2) be representations of
an abstract Lie algebra g. A map φ : V1 → V2 of vector spaces is said to be a
g-representation homomorphism if φ(X · v) = X ·φ(v) for all X ∈ g and v ∈ V1.

We conclude this section with an important example delineating the concepts
introduced above:

Example 11. The following four points illustrate the concepts introduced in
Definitions 6–10:

(a) A Lie algebra representation µ : g→ gl(V ) is said to be trivial if µ is the
0-homomorphism. The endomorphism algebra gl(V ) of a vector space is
naturally a representation of itself via the identity map.

(b) Every Lie algebra g is automatically equipped with its adjoint represen-
tation ad : g → gl(g), defined by ad(X) · Y = [X, Y ]. That ad is a
well-defined representation follows immediately from the Jacobi identity.
The adjoint representation is fundamental to the study of Lie algebras.
Note that Zg = ker ad(g) and in particular that the adjoint representa-
tion of an abelian Lie algebra is trivial.

(c) The map µ : gl(V ) → gln(k) given by choosing a basis to identify a
finite-dimensional vector space V with kn (see part (d) of Example 5)
is known as the standard representation of gl(V ) on kn. Note that this
representation is irreducible, because every nonzero vector in kn is carried
by some endomorphism to any other vector in kn.

(d) Not every Lie algebra representation is semisimple. Let g = R and
V = C2, and consider the representation µ : g → gl(V ) defined by
µ(1) = e1,2 (the elementary matrix with row-1, column-2 entry equal
to 1 and all other entries equal to 0). The nonzero proper g-invariant
subspaces of V must be spanned by eigenvectors of e1,2, but the vector
(1, 0) ∈ C2 is the only eigenvector of e1,2. Thus, V has only one nonzero
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proper g-invariant subspace and hence cannot be decomposed into a
direct sum of irreducible subrepresentations. ♣

2. More on Lie Algebras and their Representations

2.1. Properties of Lie Algebras. In part (a) of Example 5, we snuck in the
definition of an abelian Lie algebra, one in which the Lie bracket is trivial. In
this subsection, we will discuss the failure of abstract Lie algebras to be abelian
as a means of characterizing them. It will be prudent to start with a quick but
useful lemma on ideals:

Lemma 12. Let g be an abstract Lie algebra, and let a, b ⊂ g be ideals. Then
a + b, a∩ b, and [a, b] are also ideals of g. Moreover, we have that (a + b)/b '
a/(a ∩ b).

Proof. That a+ b and a∩ b are ideals is obvious; that [a, b] satisfies [[a, b], g] ⊂
[a, b] follows immediately from the Jacobi identity (see part (b) of Example 5
for inspiration). The only tricky part is to show that [a, b] is a vector subspace
of g, but observe that for any W,Y ∈ a and X,Z ∈ b we have [W,X] + [Y, Z] =
[W +Y,X+Z]− [W,Z]− [Y,X] ∈ [a, b], and closure under scalar multiplication
is manifest. The composite map a ↪→ a + b � (a + b)/b is surjective and has
kernel a∩ b, so we have an isomorphism of vector spaces (a+ b)/b ' a/(a∩ b);
this isomorphism is a Lie algebra homomorphism by part (f) of Example 5. ♠

We now define two more general types of Lie algebras, which will be charac-
terized by the extent to which they fail to abelian:

Definition 13. A Lie algebra g is said to be nilpotent if some term (and hence
all subsequent terms) of the sequence (gn : n ∈ N) defined by g0 = g and
gn = [gn−1, g] for all n ≥ 1:

g ⊃ [g, g] ⊃ [[g, g], g] ⊃ [[[g, g], g], g] ⊃ . . . ,

which is called the lower central series, is equal to 0. More generally, g is said
to be solvable if some term (and hence all subsequent terms) of the sequence
(gn : n ∈ N) defined by g0 = g and gn = [gn−1, gn−1] for all n ≥ 1:

g ⊃ [g, g] ⊃ [[g, g], [g, g]] ⊃ [[[g, g], [g, g]], [[g, g], [g, g]]] ⊃ . . . ,

which is called the derived series, is equal to 0.

By Lemma 12, every term in the lower central and derived series of a Lie
algebra is an ideal. Solvable Lie algebras are “more general” than nilpotent Lie
algebras in the sense that every nilpotent Lie algebra is solvable: indeed, one
may check (via induction) that gn ⊂ gn for all n ≥ 0, so gn = 0 for some n
implies that gn = 0 as well. The following example illustrates the difference
between solvable and nilpotent Lie algebras:
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Example 14. Let bn(k) ⊂ gln(k), where k = R or k = C, denote the Lie
subalgebra of upper triangular n×n matrices with entries in k, and let nn(k) ⊂
bn(k) denote the Lie subalgebra whose elements are strictly upper triangular
matrices. We will show that bn is solvable but not nilpotent, whereas nn is in
fact nilpotent and therefore also solvable.

By definition, we have that (bn(k))0 = (bn(k))0 = bn(k). Now (bn(k))1 =
(bn(k))1 = [bn(k), bn(k)], and the commutator of any two upper-triangular ma-
trices is strictly upper-triangular. Thus, we have that (bn(k))1 = (bn(k))1 ⊂
nn(k). If ei,j denotes the elementary matrix with 1 in the row-i, column-j entry
and 0 everywhere else, then observe that for i < j we have [ei,j, ej,j] = ei,j, from
which it follows that (bn(k))1 = (bn(k))1 ⊃ nn(k), implying that (bn(k))1 =
(bn(k))1 = nn(k). The same reasoning also implies that [nn(k), bn(k)] = nn(k),
so the lower central series of bn(k) is given by (bn(k))0 = bn(k) and (bn(k))i =
nn(k) for all i > 0.

For an upper-triangular matrix M with row-i, column-j entry Xi,j, let the
mth diagonal of X be the list of entries (Xm,i : i = 1, 2, . . . , n−m+ 1) for each
m ∈ {1, 2, . . . , n}, and let Vm denote the space of upper-triangular matrices
with ith diagonal equal to 0 for every i ∈ {1, 2, . . . ,m}; for convenience, we take
Vm = 0 for all m ≥ n. We have that nn(k) = V1, and one readily checks that
[Vi, Vj] ⊂ Vi+j for each i, j ∈ {1, 2, . . . , n}. It follows that the derived series of
bn(k) satisfies (bn(k))0 = bn(k) and (bn(k))i ⊂ V2i for each i ∈ {1, 2, . . . , n},
so (bn(k))i = 0 for each i > log2 n. It also follows that the lower central series
of nn(k) satisfies (nn(k))0 = nn, (nn(k))i ⊂ Vi+1 for each i ∈ {1, . . . , n − 1}, so
(nn(k))i = 0 for each i > n− 1. ♣

The next lemma establishes a few nice properties of solvable Lie algebras:

Lemma 15. Let g be an abstract Lie algebra, and let a, b ⊂ g be ideals. Then
g is solvable if and only if a, viewed as a Lie algebra, is solvable and g/a is
solvable. If a, b are solvable, then a + b is solvable.

Proof. For the first statement, one checks by induction that an ⊂ gn, so a is
solvable if g is. The way one computes a Lie bracket of elements in (g/a)n is by
taking representatives in g, computing the Lie bracket in g, and then passing to
the quotient g/a. Thus, if gn = 0 then (g/a)n = 0. If an1 = 0 and (g/a)n2 = 0,
then gn2 ⊂ a, so (gn2)n1 = 0. For the second statement, it suffices by Lemma 12
to show that b/(a ∩ b) is solvable, but this follows from the first statement. ♠

Thus far we have discussed solvable Lie algebras, which are in some sense
close to being abelian. We now introduce two new types of Lie algebras that
are essentially the opposite in that they are very far from being abelian:

Definition 16. A Lie algebra is said to be semisimple if it has no nonzero
solvable ideals and is said to be simple if it is nonabelian and has no nonzero
proper ideals.
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If g is a simple Lie algebra with a nonzero solvable ideal, then that ideal must
be g, but then 0 ( [g, g] ( g, a contradiction implying that g is necessarily
semisimple (so the terminology makes sense). Note that if g is a semisimple
Lie algebra, then the center Zg (see part (b) of Example 5) is trivial, be-
cause it is necessarily a nilpotent ideal of g. But since Zg = ker ad(g) (see
part (b) of Example 11), we deduce that the adjoint representation is faith-
ful for semisimple Lie algebras. This proves Ado’s Theorem (see Section 3)
for semisimple Lie algebras.

It is natural to wonder whether there is some link between simplicity of Lie
algebras and simplicity of representations of Lie algebras (given the similarity
in terminology), and indeed there is. Although we omit the proof for the sake of
brevity, a finite-dimensional Lie algebra is semisimple if and only if its adjoint
representation is semisimple. In particular, a Lie algebra is simple if and only if
it is nonabelian and its adjoint representation is irreducible (this is rather easy
to prove: invariant subspaces of the adjoint representation are none other than
ideals).

It follows from Lemma 15 that every finite-dimensional Lie algebra g has a
unique largest solvable ideal; this ideal is called the radical and is denoted by
rad(g). In this setting, note that a Lie algebra g is semisimple if and only if
rad(g) = 0. Consequently, one might expect that quotienting out by the radical
will turn a Lie algebra into a semisimple one, and this is indeed true in the
finite-dimensional setting:

Lemma 17. Let g be a finite-dimensional Lie algebra, and let a ⊂ g be a solvable
ideal. Then g/a is semisimple if and only if a = rad(g).

Proof. For the forward direction, if a 6= rad(g), then consider the nonzero ideal
rad(g)/a ⊂ g/a. Because rad(g) is solvable, we have by Lemma 15 that rad(g)/a
is solvable, a contradiction implying that a = rad(g).

For the reverse direction, note that the preimage of an ideal under a Lie
algebra homomorphism is also an ideal. Any nonzero solvable ideal of rad(g)
has as its preimage under the projection map g � g/ rad(g) a solvable ideal
of g containing rad(g). By the definition of rad(g), any such ideal must be
equal to rad(g). It follows that g/ rad(g) has no nonzero solvable ideals and
is therefore semisimple. ♠

To conclude this section, note that by analogy with the radical rad(g) of
a finite-dimensional Lie algebra g we also have the nilradical nil(g), which is
defined to be the largest nilpotent ideal of g. The nilradical is well-defined
because, just as we had with solvable ideals, the sum of any two nilpotent ideals
is also nilpotent. Note that nil(g) ⊂ rad(g).

2.2. Properties of Lie Algebra Representations. An extremely useful lemma
regarding representations in general (not just of Lie algebras) is Schur’s Lemma:
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Lemma 18 (Schur’s Lemma). Let µ1 : g → gl(V1) and µ2 : g → gl(V2) be
irreducible Lie algebra representations, and let φ : V1 → V2 be a homomorphism
of g-representations. Then either φ = 0 or φ is an isomorphism. If µ1, µ2 are
complex, then there exists a scalar λ ∈ C with φ(v) = λv for all v ∈ V1.

Proof. The first statement is obvious upon observing that kerφ and imφ are
g-invariant subspaces of V1 and V2, respectively. For the second statement, the
fact that we are dealing with complex representations means that φ has an
eigenvalue λ, so ker(φ− λ · id) ⊂ V1 is a nonzero g-invariant subspace of V1 and
must therefore be all of V1. ♠

In the case of finite-dimensional representations, we can use Schur’s Lemma to
prove that the condition of semisimplicity is in fact equivalent to the condition
of complete reducibility:

Proposition 19. Let µ : g → gl(V ) be a finite-dimensional representation.
Then µ is semisimple if and only if (A) every subrepresentation of V is also
semisimple if and only if (B) V is completely reducible, in the sense that
for some n there exist irreducible subrepresentations µi : g → gl(Vi) for i ∈
{1, 2, . . . , n} satisfying µ =

⊕n
i=1 µi.

Proof. For equivalence (A), suppose µ is semisimple, and let W be a subrep-
resentation of V . If U ⊂ W is a g-invariant subspace, then there exists a
g-invariant subspace U ′′ ⊂ V with V = U ⊕ U ′′, and so W = U ⊕ U ′ where
U ′ = U ′′ ∩W . It follows that W gives rise to a semisimple representation of g.
The other direction is obvious.

For equivalence (B), the forward direction follows immediately from inducting
on the dimension of V : if V is not irreducible, then split V as V = W ⊕W ′ for
g-invariant subspaces W,W ′ ⊂ V and then repeat. As for the reverse direction,
take W ⊂ V a g-invariant subspace. Applying Schur’s Lemma to the composite
map W ↪→ V � Vi for each i yields that W =

⊕k
j=1 Vij for some subset

{i1, . . . , ik} ⊂ {1, . . . , n}. Then V = W ⊕W ′, where W ′ is the direct sum of Vi
over all i 6∈ {i1, . . . , ik}. ♠

We conclude this section with a nice result that links representations of a real
Lie algebra and its complexification (see part (g) of Example 5):

Proposition 20. Every complex representation µ : g→ gl(V ) extends uniquely
to a complex representation µC : gC → gl(V ), and the map µ 7→ µC gives a
bijection between complex representations of g and complex representations of
gC. This bijection preserves irreducibility.

Proof. Given a complex representation µ : g → gl(V ), we would like to define
a complex representation µC : gC → gl(V ) that extends µ. Since µC must be
a representation of Lie algebras, we require that µC be a homomorphism of
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Lie algebras. Thus for X, Y ∈ g, we must have that µC(X + iY ) = µC(X) +
iµC(Y ) = µ(X) + iµ(Y ), implying that µC is unique, if it exists. To check that
µC exists, we need to verify that the map µC : gC → gl(V ) defined by sending
X + iY 7→ µ(X) + iµ(Y ) is commutes with the Lie bracket. Notice that

µC([X + iY,X ′ + iY ′]) = µC([X,X ′]− [Y, Y ′] + i([X, Y ′] + [Y,X ′])) =

µ([X,X ′])− µ([Y, Y ′]) + i(µ([X, Y ′]) + µ([Y,X ′])) =

[µ(X), µ(X ′)]− [µ(Y ), µ(Y ′)] + i([µ(X), µ(Y ′)] + [µ(Y ), µ(X ′)]),

and that we also have

[µC(X + iY ), µC(X ′ + iY ′)] = [µ(X) + iµ(Y ), µ(X ′) + iµ(Y ′)] =

[µ(X), µ(X ′)]− [µ(Y ), µ(Y ′)] + i([µ(X), µ(Y ′)] + [µ(Y ), µ(X ′)]),

which establishes the desired compatibility, so µC exists and is uniquely defined.
Consider the map Φ from complex representations of g to complex repre-

sentations of gC defined by µ 7→ µC, and consider the map Ψ n the reverse
direction defined by restriction. We shall prove that these maps are mutu-
ally inverse. Indeed, notice that the restriction of µC to g is by its very def-
inition equal to µ, which proves that the map Ψ ◦ Φ = id. Now, given a
complex representation µ̃ : gC → gl(V ), we observe that for X, Y ∈ g we have
µ̃(X+iY ) = Ψ(µ̃)(X)+iΨ(µ̃)(Y ) = Φ(Ψ(µ̃))(X+iY ), implying that Φ◦Ψ = id.
We have thus proven the desired bijection.

Finally, if W ⊂ V is an invariant subspace for the representation µC, then
XW ⊂ W for all X ∈ g, implying that W is an invariant subspace for the
representation µ. Thus, if µ is irreducible, so that its only invariant subspaces
are 0 and V , then µC must also be irreducible. Now suppose W ⊂ V is an
invariant subspace for the representation µ, which implies that XW ⊂ W for all
X ∈ g. Then for any X, Y ∈ g we have that (X+iY )W ⊂ XW+iY W = XW+
YW ⊂ W + W = W . Thus, W is an invariant subspace for the representation
µC, so if µC is irreducible, meaning that its only invariant subspaces are 0 and
V , then µ must also be irreducible. ♠

2.3. Three Key Implements. In this section, we present three key imple-
ments that we will make extensive use of in the proof of Ado’s Theorem.

2.3.1. The Universal Enveloping Algebra. Observe that we do not a priori have
a notion of multiplication of elements in a Lie algebra g. However, if we work
with the image of g under a representation, we do have a notion of multiplication
(given by composition of endomorphisms), and in particular, we do have a
notion of multiplication for linear Lie algebras (subalgebras of gl(V )). Because
this notion of multiplication depends on the choice of representation ρ, it would
be nice if we could construct a “universal” object that somehow simultaneously
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captures all of these notions of multiplication. It is for this reason that we
introduce the universal enveloping algebra:

Definition 21. Let g be a Lie algebra over a field k (here k = R or k = C).
The universal enveloping algebra U(g) of g is the unital associative algebra
over k, generated by the symbols ι(X) for X ∈ g subject to the relations
ι([X, Y ]) = ι(X)ι(Y )− ι(Y )ι(X) for all X, Y ∈ g.

Note that for a nonzero Lie algebra g, the universal enveloping algebra is
always infinite-dimensional. The Poincaré-Birkhoff-Witt Theorem (which we
will not prove for the sake of brevity) gives us a nice basis for the universal
enveloping algebra:

Theorem 22 (Poincaré-Birkhoff-Witt). Let the list (X1, X2, . . . , Xn) ⊂ g be a
basis for g. Then the monomials of the form X i1

1 X
i2
2 · · ·X in

n for nonnegative
integers i1, i2, . . . , in form a basis of U(g).

It follows immediately from the Poincaré-Birkhoff-Witt Theorem that the Lie
algebra homomorphism ι : g→ U(g) defined by sending X to the symbol ι(X)
is injective. Therefore, it makes sense to drop the ι’s when referring to elements
of U(g), and throughout the rest of this article, we shall simply write X for
ι(X). The next theorem demonstrates that the universal enveloping algebra
lives up to its name:

Theorem 23. Let A be a unital associative algebra over k (where k = R or
k = C), and let µ : g → A be a map of k-vector spaces satisfying µ([X, Y ]) =
µ(X)µ(Y ) − µ(Y )µ(X) for all X, Y ∈ g. Then there exists a unique extension
of µ to a map µ̃ : U(g)→ A of associative algebras such that µ = µ̃ ◦ ι.

Proof. We simply define µ̃(X) = µ(X) for all X ∈ g and extend multiplicatively
to all of U(g). Then µ̃ is well-defined because it vanishes on the defining relations
of U(g): indeed, µ̃([X, Y ]) = µ([X, Y ]) = µ(X)µ(Y )−µ(Y )µ(X) = µ̃(X)µ̃(Y )−
µ̃(Y )µ̃(X) = µ̃(XY − Y X). That µ̃ is a map of associative algebras and that
µ = µ̃ ◦ ι are evident from the construction . ♠

The universal enveloping algebra is one of the key tools that we will employ
in the proof of Ado’s Theorem (see Section 3).

2.3.2. Engel’s Theorem and Corollaries. The second key implement that we will
be using in the proof of Ado’s Theorem is Engel’s Theorem, which tells us when
a finite-dimensional representation, by nilpotent operators, of a Lie algebra g
has the property that every element of g acts by a strictly upper-triangular
matrix. We now give a proof of this theorem:

Theorem 24 (Engel’s Theorem). Let V be a finite-dimensional vector space,
and let g be a (necessarily finite-dimensional) Lie subalgebra g ⊂ gl(V ) with the
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property that X acts nilpotently on V for every X ∈ g. Then there exists a basis
of V with respect to which the matrix of every X ∈ g is strictly upper-triangular.

Proof. By a standard linear algebra argument, it suffices to show that there
exists a nonzero vector v ∈ V with X · v = 0 for all X ∈ g. We proceed by
induction on dim g; noting that the theorem holds trivially in the base case
where dim g = 0. Choose a codimension-1 ideal a ⊂ g; one way of doing this is
by taking a to be any maximal element among proper subalgebras of g. Indeed,
let a be such a subalgebra. Then since a acts nilpotently on V , we have that
ad(a) acts nilpotently on gl(V ) and hence on g/a. By the induction hypothesis
(for the proof of Engel’s Theorem), there exists v′ ∈ g \ a such that X · v′ ∈ a
for all X ∈ a. But then span(v′, a) is a Lie subalgebra of g properly containing
a as an ideal, so span(v′, a) = g and the ideal a has codimension 1 in g.

Now, by the induction hypothesis, the subspace W ⊂ V of vectors w ∈ V with
X ·w = 0 for all X ∈ a is nonzero. If Y ∈ g\a, then g = span(a, Y ), so to prove
the theorem it suffices to show that there exists w ∈ W with Y · w = 0. Notice
that for any X ∈ a and w′ ∈ W we have X · (Y ·w′) = Y · (X ·w′)+ [X, Y ] ·w′ =
0 + 0 = 0, so Y · w′ ∈ W , implying that Y ·W ⊂ W . But since the action of Y
on V is nilpotent, the action of Y on W is also nilpotent, implying that there
exists w ∈ W with Y · w = 0, and this is the desired result. ♠

We will also require the following corollaries of Engel’s Theorem in the proof
of Ado’s Theorem:

Corollary 25. Let V be a finite-dimensional vector space, let g be a (necessarily
finite-dimensional) Lie subalgebra g ⊂ gl(V ), and let a, b be ideals of g such that
b ⊂ [a, g]. If [a, b] is nilpotent, so is b.

Proof. Take X ∈ b. To show that X is nilpotent, it suffices to show that
Tr(Xm) = 0 for each positive integer m. Indeed, notice that if λ1, . . . , λn are
the eigenvalues ofX with repetition (say we are working over C), then Tr(Xm) =
λm1 + · · ·+ λmn , so by Newton’s identities, the characteristic polynomial of X is
xn, implying that X is nilpotent by the Cayley-Hamilton Theorem.

It further suffices to show that Tr([Y, Z]Xm−1) = 0 for Y ∈ a and Z ∈ g,
because b ⊂ [a, g]. But then we have that

Tr([Y, Z]Xm−1) = −Tr(Z[Y,Xm−1]) = −
m−1∑
i=1

Tr(ZX i−1[Y,X]Xm−i−1),

and each trace in the above sum is 0. Indeed, suppose X1, X2, . . . , X` ∈ g with
at least one Xi being an element of the nilpotent ideal [a, b]. Then consider
the chain of subspaces Vi = [a, b]i · V (here, the superscript i does not refer to
the derived series but to i-fold multiplication by elements in [a, b]). Applying
Engel’s Theorem to the nilpotent ideal [a, b] yields that Vj = 0 for some j. Each
Vi is g-invariant because [a, b] is an ideal, so X1X2 · · ·X` sends Vi to Vi + 1 for
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each i. Thus, X1X2 · · ·X` is nilpotent and has 0 trace. It follows that b is
nilpotent, as desired. ♠

Corollary 26. Let g be a finite-dimensional Lie algebra, and let a ⊂ g be a
solvable ideal. Then ad(X)(a) ⊂ nil(g) for every X ∈ g.

Proof. It suffices to show that the ideal rad(g)∩ [g, g] is nilpotent. We first deal
with the linear case: suppose g ⊂ gl(V ) for some finite-dimensional vector space
V . Suppose for some i we have rad(g)i+1∩[g, g] is nilpotent (here the superscript
i + 1 does refer to the derived series); notice that such an i exists because
rad(g)n = 0 for n sufficiently large. Then the smaller ideal [rad(g)i, [rad(g)i, g]] is
nilpotent, so by Corollary 25, [rad(g)i, g] is nilpotent, and applying Corollary 25
to the smaller ideal [g, rad(g)i ∩ [g, g]] yields that rad(g)i ∩ [g, g] is nilpotent. It
follows by induction that rad(g) ∩ [g, g] is nilpotent.

Otherwise, if g is an abstract Lie algebra, then pass to the image ad(g) of g
under the adjoint representation, which is solvable by Lemma 15. The previous
paragraph shows that the image of rad(g)∩ [g, g] is nilpotent, so since the kernel
of the adjoint representation is the manifestly nilpotent ideal Zg, we have that
rad(g) ∩ [g, g] must itself be nilpotent. ♠

2.3.3. Levi’s Theorem. It follows from Lemma 17 that we have a short exact
sequence of Lie algebras

0 −→ rad(g) −→ g −→ g/ rad(g) −→ 0.

It is natural to ask when the above short exact sequence splits. The answer
to this question is provided by Levi’s Theorem, which is the third and final
implement that we will require for the proof of Ado’s Theorem:

Theorem 27 (Levi’s Theorem). Let g be a (real or complex) Lie algebra. Then
there is a subalgebra h ⊂ g, called a Levi subalgebra, giving a vector space
decomposition g = rad(g)⊕ h.3

Proof. We proceed by induction on dim g. When dim g = 0 there is nothing
to prove, so suppose dim g > 0. If rad(g) contains a nonzero proper ideal a,
then by the induction hypothesis there exists a Levi subalgebra h′ ⊂ g/a for
rad(g)/a. Since h′ is semisimple, we have that rad(h′) = 0. Let h′′ denote the
preimage of h′ under the projection map g � g/a. Then since h′ = h′′/a, we
have that rad(h′′) = a. Noting that dim h′′ < dim g, because dim rad(g)/a > 0,
we have by the induction hypothesis that there exists a Levi subalgebra h ⊂ h′′

for a. Then h ⊂ g is also a Levi subalgebra for rad(g).
We may therefore assume that rad(g) contains no nonzero proper ideals. If

rad(g) is nonabelian, then [rad(g), rad(g)] ⊂ rad(g) is a nonzero ideal, and it
is proper because rad(g) is solvable. We thus have a contradiction implying

3Warning: this decomposition is not compatible with the Lie bracket operation.
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that rad(g) is abelian. Since [rad(g), g] ⊂ rad(g), either [rad(g), g] = 0 or
[rad(g), g] = g. If the former is true, then rad(g) = Zg because Zg is nilpotent
and thus solvable. Since Zg = ker ad, the adjoint representation ad : g→ gl(g)
descends to a representation µ : g/ rad(g) → gl(g). We now invoke a fact that
we will not prove because its proof requires much structure theory that is not
otherwise relevant to the present exposition:

Theorem 28. Let µ : g→ gl(V ) be a representation of a semisimple Lie algebra
g. Then µ is semisimple.

By Theorem 28 and because g/ rad(g) is semisimple, the g-invariant subspace
rad(g) ⊂ g has a g-invariant complement h, so we obtain a decomposition of
Lie algebras g = rad(g)⊕ h, with h being the desired Levi subalgebra. We may
therefore assume that [rad(g), g] = g.

To finish the proof, consider the representation µ : g → gl(gl(g)) defined by
X · ξ = ad(X) ◦ ξ − ξ ◦ ad(X) for all X ∈ g and ξ ∈ gl(g), and consider the
vector subspaces A,B,C ⊂ gl(g) defined by

A = {ad(X) : X ∈ rad(g)},
B = {ξ ∈ gl(g) : ξ(g) ⊂ rad(g) and ξ(rad(g)) = 0},
C = {ξ ∈ gl(g) : ξ(g) ⊂ rad(g) and ξ|rad(g) is multiplication by a scalar},

Notice that A ⊂ B because rad(g) is abelian and that B ⊂ C by construction.
An application of the Jacobi identity tells us that A is g-invariant (with respect
to the representation µ), and B,C are evidently g-invariant. Observe that
C/B = k as vector spaces (where k = R or k = C depending on whether g is
real or complex) via the map sending ξ ∈ C to the scalar λ by which ξ acts
on rad(g). But because the Lie bracket on C/B is trivial (since multiplication
by scalars is commutative), we have that C/B = k as Lie algebras. One can
likewise check that g · C ⊂ B and that rad(g) · C ⊂ A, from which we deduce
that C/A and C/B can be given the structure of g/ rad(g)-representation.

Consider the surjective map of vector spaces φ : C/A→ C/B = k induced by
the identity map on C. Since for any X + rad(g) ∈ g/ rad(g) and ξ +A ∈ C/A
we have φ((X + rad(g)) · (ξ+A)) = X · ξ+B = (X + rad(g)) · (ξ+B), the map
φ is compatible with the action of g/ rad(g). Because g/ rad(g) is semisimple,
Theorem 28 tells us that φ splits, i.e. it has a right inverse ψ : C/B → C/A.
Let ξ ∈ C be a preimage of ψ(1) ∈ C/A so that g · ξ ⊂ A, and observe that
ξ|rad(g) = id.

Consider the subspace h ⊂ g defined by h = {X ∈ g : X · ξ = 0}. Clearly, h is
a Lie subalgebra of g. If X ∈ rad(g)∩h, then 0 = X ·ξ = − ad(X), implying that
ad(X) = 0 and that the subspace {Y : Y = cX for some c ∈ k} is a nonzero
ideal of g contained in rad(g), contradicting our assumption that rad(g) contains
no such ideals. Moreover, if X ∈ g, then X · ξ ∈ A so X · ξ = ad(Y ) for some
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Y ∈ rad(g). But then (X + Y ) · ξ = ad(Y ) − ad(Y ) = 0, so X + Y ∈ h. It
follows that g = rad(g) + h, so in fact g = rad(g)⊕ h. ♠

Note that if h ⊂ g is a Levi subalgebra for rad(g), then h cannot contain any
nonzero solvable ideals, so h is semisimple.

3. Proving Ado’s Theorem

In its purest form, Ado’s Theorem states that every finite-dimensional (real
or complex) Lie algebra is linear, in the sense that it has a faithful finite-
dimensional representation. But as with many theorems in mathematics, we
will find it convenient to work toward a stronger statement. We first need to
define a special kind of Lie algebra representation:

Definition 29. Let µ : g → gl(V ) be a Lie algebra representation. Then µ
is said to be a nilrepresentation if µ(X) is a nilpotent element of gl(V ) for all
X ∈ nil(g).

Note that by Engel’s Theorem, a nilrepresentation µ : g → gl(V ) satisfies
the property that µ(g)m = 0 for some positive integer m (indeed, m = dimV
works). In Sections 3.1–3.3, we will prove the following Ado-type theorem about
nilrepresentations of Lie algebras:

Theorem 30. Every finite-dimensional (real or complex) Lie algebra has a
faithful finite-dimensional nilrepresentation.

We follow the strategy detailed in [4] (which in turn follows the proof pre-
sented in [1]); namely, we first tackle the nilpotent and solvable cases (in that
order; see Sections 3.1 and 3.2) before dealing with the general case (see Sec-
tion 3.3). Before we get on with the proof, we observe that relaxing the con-
ditions of finite-dimensionality renders the proof of Ado’s Theorem almost too
easy:

Theorem 31. Every Lie algebra has a faithful representation.

Proof. Let g be a Lie algebra, and consider the map µg : g → gl(U(g)) defined
by sending X ∈ g to the map of left multiplication by X. Clearly µg is a map
of vector spaces, and µg([X, Y ])(Z) = [X, Y ]Z = (XY − Y X)Z, so µg is a Lie
algebra representation. It is faithful because µg(X)(1) = X 6= 0 for all nonzero
X ∈ g. ♠

However, the universal enveloping algebra is far from being finite-dimensional,
and proving Theorem 30 will be considerably more involved.

Let g be a finite-dimensional Lie algebra. If µ′ : g → gl(V ′) is a finite-
dimensional nilrepresentation whose restriction to Zg is faithful, then the rep-
resentation µ : g→ gl(V ), where V = V ′ ⊕ g defined by µ = µ′ ⊕ ad is faithful
and finite-dimensional. In fact, µ is also a nilrepresentation, because the adjoint
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representation is a nilrepresentation — given any X ∈ nil(g), Z ∈ g, we have
that [X,Z] ∈ nil(g) so applying ad(X) sufficiently many times will yield 0. It
therefore suffices to construct such a representation µ′.

3.1. The Nilpotent Case. Suppose g is nilpotent. If g is in fact abelian,
consider the map µ′ : g → gl(V ′), where V ′ = g ⊕ C, defined by X · (Y, t) =
(tX, 0) for all X, Y ∈ g and t ∈ C. Note that µ′ is a map of vector spaces and
that µ′(X) is nilpotent for all X ∈ g. Moreover, µ′([X, Y ])(Z, t) = (t[X, Y ], 0) =
(0, 0) = X · (tY, 0) − Y · (tX, 0) and X · (0, 1) = (X, 0), so µ′ is a faithful
nilrepresentation, thus proving Theorem 30 in the abelian case.

We may now suppose that g is nonabelian, so that Zg is an ideal of g having
strictly smaller dimension (here dim g is necessarily positive). We will proceed
by induction on dim g: suppose that the theorem holds for all Lie algebras of
smaller dimension. The strategy will be to find a proper ideal a ⊂ g containing
Zg, apply the induction hypothesis to a, and extend the resulting nilrepresen-
tation to all of g in such a way that it remains faithful on a.

We first claim that we can choose the desired ideal a so that it has codimension
1. Indeed, to find such an ideal is to find a codimension-1 ideal of the (nonzero)
Lie algebra g′ = g/Zg, for which it suffices to find a codimension-1 ideal of the
abelian Lie algebra g′′ = g′/[g′, g′]. But, as stated in part (a) of Example 5,
any codimension-1 subspace of g′′ will do. The claim follows, and by choosing
h ⊂ g to be an aribtrary subspace complementary to a, we obtain a vector space
decomposition g = a ⊕ h. Observe that this decomposition is not compatible
with the Lie bracket, but because h is 1-dimensional, it is nonetheless an abelian
Lie subalgebra of g (see part (a) of Example 5).

Now consider the universal enveloping algebra U(a), which gives rise to a
representation µa : a → gl(U(a)) (see the proof of Theorem 31). We want to
extend this representation to be defined on all of g. To do so, consider the map
µ′′ : g = a⊕ h → gl(U(a)) defined (on the spanning set of monomials in U(a))
by the “Leibniz rule”

(Y,X) · (Z1Z2 · · ·Zm) = Y Z1Z2 · · ·Zm +
n∑

i=1

Z1 · · · [X,Zi] · · ·Zn

for all X ∈ h and Y, Z1, . . . , Zn ∈ a. It is clear that µ′′ is a map of vector spaces;
further notice that

(Y,X) · ((Y ′, X ′) · (Z1Z2 · · ·Zm)) =

Y Y ′Z1Z2 · · ·Zm + [X, Y ′]Z1Z2 · · ·Zm+

Y
n∑

i=1

Z1 · · · [X ′, Zi] · · ·Zn + Y ′
n∑

i=1

Z1 · · · [X,Zi] · · ·Zn+
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n∑
i=1

Z1 · · · [X, [X ′, Zi]] · · ·Zn +
∑

1≤i 6=j≤n

Z1 · · · [X ′, Zi] · · · [X,Zj] · · ·Zn.

Applying the Jacobi identity and a symmetry argument then yields that

(Y,X) · ((Y ′, X ′) · (Z1Z2 · · ·Zm))− (Y ′, X ′) · ((Y,X) · (Z1Z2 · · ·Zm)) =

(Y Y ′ + [X, Y ′]− Y ′Y − [X ′, Y ])(Z1Z2 · · ·Zm) = [(Y,X), (Y ′, X ′)] · (Z1Z2 · · ·Zm),

from which we conclude that µ′′ is a Lie algebra representation. By considering
the action of a on 1 ∈ U(a) we see that µ′′ is faithful on a.

If we are to get anywhere with the above construction, we must find a way
to turn µ′′ into a finite-dimensional representation. For this, we turn to the
induction hypothesis: there exists a faithful finite-dimensional nilrepresentation
µ0 : a→ gl(V0) and a positive integer m with µ0(a)m = 0. Consider the quotient
of U(a) by the two-sided ideal I ⊂ U(a) generated by degree-mmonomials. Note
that U(a)/I is finite-dimensional because it is spanned by monomials of degree
strictly less than m. Also observe that the map U(a)→ gl(V0) (induced by µ0)
vanishes on I by construction and hence gives rise to a map U(a)/I → gl(V0);
it follows that the composite map a → U(a) � U(a)/I is injective, because
postcomposing with the map U(a)/I → gl(V0) gives the injective map a →
gl(V0). Again, by considering the action of a on 1 ∈ U(a)/I, we see that a acts
faithfully on U(a)/I. Since the action of h on U(a) also descends to an action on
U(a)/I, the representation µ′′ gives rise to a finite-dimensional representation
µ′ : g→ gl(U(a/I)) that is faithful on a.

To finish checking that µ′ is the desired representation, we must show that µ′

is a nilrepresentation. But this is obvious: the action of a on U(a)/I is nilpotent
because acting by an element of a sufficiently many times will cause the degrees
of all terms in an element of U(a)/I to exceed m, and the action of h on U(a)/I
is nilpotent because g is nilpotent.

3.2. The Solvable Case. Now suppose g is solvable; our argument for this case
will proceed in similar fashion to our argument for the nilpotent case. We will
proceed by induction on dim g/ nil(g); for the base case, when dim g/ nil(g) =
0, note that this implies that g is nilpotent, so Theorem 30 holds. We may
therefore suppose that dim g/ nil(g) > 0 and that the theorem holds for all Lie
algebras g̃ with smaller value of dim g̃/ nil(g̃). It suffices to construct a finite-
dimensional representation of g that is both faithful and nilpotent on nil(g),
because Zg ⊂ nil(g).

Just as we did in the nilpotent case, choose a codimension-1 ideal a ⊂ g
containing nil(g) and let h ⊂ g be a subspace complementary to a, so that
g = a ⊕ h (recall that h is an abelian Lie subalgebra of g). Observe that
nil(a) = nil(g).
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By the induction hypothesis, there exists a finite-dimensional representation
µ0 : a → gl(V0) that is faithful and nilpotent on nil(a) = nil(g), so that by
Engel’s Theorem there exists a positive integer m with µ0(nil(g))m = 0. Re-
peating the argument used in the nilpotent case, we obtain a representation
µ′′ : g→ gl(U(a)) that is faithful on a and hence on nil(g).

In order to turn µ′′ into a finite-dimensional representation, consider the two-
sided ideal I ⊂ U(a) that is generated by the elements of nil(g) together with the
elements of ker(U(a) 7→ gl(V0)). We claim that U(a)/Im is finite-dimensional.
To prove this claim, observe that by the Cayley-Hamilton Theorem, for every
X ∈ a there exists a polynomial p(X) ∈ U(a) (an element of the form

∑n
i=0 aiX

i

for scalars a0, a1, . . . , an) that vanishes under µ0, so that p(X) ∈ I and p(X)m ∈
Im. It follows that up to an element of Im, we can replace any monomial in
U(a) with a monomial of bounded degree, which yields the claim.

Also observe that the map U(a) → gl(V0) (induced by µ0) vanishes on I,
and hence on Im, by construction and therefore gives rise to a map U(a)/Im →
gl(V0); it follows that the composite map a → U(a) � U(a)/Im is injective,
because postcomposing with the map U(a)/Im → gl(V0) gives the injective
map a → gl(V0). By considering the action of a on 1 ∈ U(a)/Im, we see
that a acts faithfully on U(a)/Im. We claim that the action of h on U(a) also
descends to an action on U(a)/Im. Indeed it follows from Corollary 26 that
h · I ⊂ I, and then an application of the “Leibniz rule” yields that h · Ik ⊂ Ik.
Thus, the representation µ′′ gives rise to a finite-dimensional representation
µ′ : g→ gl(U(a/Im)) that is faithful on a.

To finish checking that µ′ is the desired representation, we must show that
µ′ is a nilrepresentation. But this is obvious: the action of nil(g) on U(a)/Im is
nilpotent because nil(g)m · U(a) ⊂ Im.

3.3. The General Case. Now suppose g is not necessarily nilpotent or solv-
able. By Levi’s Theorem, there exists a vector space decomposition g = rad(g)⊕
h, where h is a Levi subalgebra of g. From the solvable case, we know that there
exists a finite-dimensional representation µ0 : rad(g) → gl(V0) that is faithful
and nilpotent on nil(g), so that by Engel’s Theorem there exists a positive in-
teger m with µ0(nil(g))m = 0. One may then repeat the argument from the
solvable case (essentially verbatim) to construct the desired nilrepresentation
µ′. This concludes the proof of Ado’s Theorem.
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