Math 295X Problem Set 4

Ashvin A. Swaminathan
swaminathan@math.harvard.edu

February 17, 2024

Problem 1

Let $f \in V(\mathbb{Z})$ be an integral binary cubic form, and let p be a prime such that $f \not \equiv 0(\bmod p)$. Suppose that f factorizes modulo p as

$$
f(x, y) \equiv \alpha \times \prod_{i} f_{i}^{e_{i}}
$$

where $\alpha \in \mathbb{F}_{p}^{\times}$and the f_{i} are distinct and irreducible binary forms of degree at most 3 . Prove that we have the product decomposition

$$
R_{f} / p R_{f} \simeq \prod_{i} \mathbb{F}_{p^{\operatorname{deg} f_{i}}}[t] /\left(t^{e_{i}}\right)
$$

Hint: When $p \neq 2$, use the action of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ to ensure that none of the f_{i} are equal to y. This is not always possible when $p=2$, but handle this case separately.

Problem 2

Let p be a prime. Determine the probability that $f \in V(\mathbb{Z})$ has each possible splitting type modulo p, and prove that the probability that R_{f} is maximal is $\left(1-p^{-2}\right)\left(1-p^{-3}\right)$.
Hint: Recall that R_{f} is automatically maximal if f has unramified splitting type; on the other hand, if f has ramified splitting type, then Dedekind's criterion gives a condition modulo p^{2} for R_{f} to be maximal.

Problem 3

State a version of Davenport's Lemma for lattice points belonging to a residue class modulo m (in particular, determine how the error term depends on the modulus m). Use this version of the lemma to improve the error term in our asymptotic count of maximal cubic rings from $o(X)$ to $O\left(X^{5 / 6}\right)$.

