Math 295X Problem Set 2

Ashvin A. Swaminathan
swaminathan@math.harvard.edu

February 1, 2024

Problem 1

Prove that the ring of integers of the field $K=\mathbb{Q}[x] /\left(x^{3}-x^{2}-2 x-8\right)$ is not monogenic; i.e., prove that $\mathcal{O}_{K} \neq \mathbb{Z}[\alpha]$ for any $\alpha \in \mathcal{O}_{K}$.
Hint: Prove the stronger theorem that if the prime 2 splits completely in a field of degree at least 3 , then its ring of integers is not monogenic.

Problem 2

Verify that the two constructions given in lecture, of a binary cubic form from a cubic ring and vice versa, are mutually inverse to each other, thus completing the proof of the Delone-Faddeev correspondence.

Problem 3

Prove the Iwasawa decomposition of $\mathrm{GL}_{2}(\mathbb{R})$, which states that every matrix in $g \in \mathrm{GL}_{2}(\mathbb{R})$ may be written uniquely as a product $g=u t \theta \lambda$, where u is lower-triangular unipotent, t is diagonal of determinant $1, \theta \in \mathrm{SO}_{2}(\mathbb{R}) /\{ \pm \mathrm{id}\}$, and λ is a scalar multiple of the identity.
Hint: Use the Gram-Schmidt process for the construction of an orthonormal basis.

