Math 295X Problem Set 1

Ashvin A. Swaminathan
swaminathan@math.harvard.edu

January 25, 2024

Problem 1

Use the Minkowski bound $\sqrt{\left|\Delta_{K / \mathbb{Q}}\right|} \geq(\pi / 4)^{\operatorname{deg} K / 2} \times(\operatorname{deg} K)^{\operatorname{deg} K} /(\operatorname{deg} K)$!, together with the Minowski Lattice Point Theorem (see below) to prove the Hermite-Minkowski Theorem, that there are finitely many number fields of bounded discriminant.

Theorem 1. Let Γ be a complete lattice in a vector space V over \mathbb{R}, and let X be a centrally symmetric convex subset of V such that $\operatorname{Vol}(X)>2^{\operatorname{dim} V} \times \operatorname{Vol}(\Gamma)$, where $\operatorname{Vol}(\Gamma)$ denotes the volume of a fundamental domain for Γ. Then X contains at least one nonzero lattice point of Γ.

Hint: Use the Minkowski theory to show that, for number fields of fixed degree and discriminant, there are only finitely many possibilities for the minimal polynomial of a primitive element.

Problem 2

Let p be a prime. By analogy with the parametrization of quadratic rings over \mathbb{Z}, formulate and prove an orbit parametrization for quadratic rings over \mathbb{Z}_{p}.

Problem 3

An integer is said to be k-free if it is not divisible by any nontrivial $k^{\text {th }}$ power. Prove that the probability that an integer is k-free is $1 / \zeta(k)$.

